[galib] A bug in GADemeGA.step()
Iavor N. Trifonov
trifonov at WPI.EDU
Wed Mar 17 12:36:04 EST 2004
Hi,
I am implementing cooperative coevolution using the GADemeGA class. I
inherit from it in order to provide for a probe that can extract
representatives at every step and set the number of migrating individuals
across populaitons to zero. Yet, even though there is no migration I've
noticed that some individuals still 'leak' between the populations. I
think I found how that happens but want to make sure that fixing it
doesn't mess with the authors original idea. The problem seems to be the
temporary population that is used within the step method to generate
offspring for each deme. The same instance of this population (tmppop) is
used for hodling the crossover offsprings for each deme in turn, but it is
not cleared for every consequtive deme. This way, when the resulting
children are put back into a population, some remaining offspring from
crossovers performed for previous populations also sneak in. I inserted a
local GAPopulation variable instead, which I create and destroy for every
deme and that fixed the problem. I am attaching a copy of my version of
GADemeGA.c - the only change is in the step method, with the mypop
variable used instead of tmppop.
As tmppop is not a local variable to the step method, but rather a member
variable for the GADemeGA class, my question is, does tmppop have any
other intended use, other than serving as a temp variable in the step
method? From what I could infer by looking at the rest of the code, it
seems like tmppop is not used for anything else. I just want to make sure.
Any comment on that would be appreciated.
Best,
Iavor Trifonov
Worcester Polytechnic Institute
Worcester, MA
-------------- next part --------------
/* ----------------------------------------------------------------------------
gademe.C
mbwall 28jul94
Copyright (c) 1995-1996 Massachusetts Institute of Technology
all rights reserved
Souce file for the deme-based genetic algorithm object.
---------------------------------------------------------------------------- */
#include <ga/garandom.h>
#include <ga/GADemeGA.h>
GAParameterList&
GADemeGA::registerDefaultParameters(GAParameterList& p) {
GAGeneticAlgorithm::registerDefaultParameters(p);
p.add(gaNnPopulations, gaSNnPopulations, GAParameter::INT, &gaDefNPop);
p.add(gaNnMigration, gaSNnMigration, GAParameter::INT, &gaDefNMig);
return p;
}
GADemeGA::GADemeGA(const GAGenome& c) : GAGeneticAlgorithm(c) {
npop = gaDefNPop;
params.add(gaNnPopulations, gaSNnPopulations, GAParameter::INT, &npop);
nmig = gaDefNMig;
params.add(gaNnMigration, gaSNnMigration, GAParameter::INT, &nmig);
unsigned int nr = pop->size()/2;
nrepl = new int [npop];
deme = new GAPopulation* [npop];
pstats = new GAStatistics [npop];
tmppop = new GAPopulation(c, nr);
for(unsigned int i=0; i<npop; i++) {
nrepl[i] = nr;
deme[i] = new GAPopulation(*pop);
}
}
GADemeGA::GADemeGA(const GAPopulation& p) : GAGeneticAlgorithm(p) {
if(p.size() < 1) {
GAErr(GA_LOC, className(), "GADemeGA(GAPopulation&)", gaErrNoIndividuals);
pop = 0; nrepl = 0; tmppop = 0; pstats = 0;
}
else {
npop = gaDefNPop;
params.add(gaNnPopulations, gaSNnPopulations, GAParameter::INT, &npop);
nmig = gaDefNMig;
params.add(gaNnMigration, gaSNnMigration, GAParameter::INT, &nmig);
unsigned int nr = pop->size()/2;
nrepl = new int [npop];
deme = new GAPopulation* [npop];
pstats = new GAStatistics [npop];
tmppop = new GAPopulation(p.individual(0), nr);
for(unsigned int i=0; i<npop; i++) {
nrepl[i] = nr;
deme[i] = new GAPopulation(p);
}
}
}
GADemeGA::GADemeGA(const GADemeGA& orig) : GAGeneticAlgorithm(orig) {
deme = 0; nrepl = 0; tmppop = 0; pstats = 0;
copy(orig);
}
GADemeGA::~GADemeGA(){
for(unsigned int i=0; i<npop; i++)
delete deme[i];
delete [] deme;
delete [] nrepl;
delete [] pstats;
delete tmppop;
}
GADemeGA&
GADemeGA::operator=(const GADemeGA& orig){
if(&orig != this) copy(orig);
return *this;
}
void
GADemeGA::copy(const GAGeneticAlgorithm& g){
GAGeneticAlgorithm::copy(g);
const GADemeGA& ga = DYN_CAST(const GADemeGA&,g);
unsigned int i;
for(i=0; i<npop; i++)
delete deme[i];
delete [] deme;
delete [] nrepl;
delete [] pstats;
nmig = ga.nmig;
npop = ga.npop;
nrepl = new int [npop];
deme = new GAPopulation* [npop];
memcpy(nrepl, ga.nrepl, npop * sizeof(int));
for(i=0; i<npop; i++)
deme[i]->copy(*(ga.deme[i]));
tmppop->copy(*(ga.tmppop));
pstats = new GAStatistics[npop];
for(i=0; i<npop; i++)
pstats[i] = ga.pstats[i];
}
// We make sure that the replacement pop is always at least one individual. If
// the percentage replacement is specified then we use that to determine the
// size of the tmp pop. Otherwise we use the absolute number of individuals.
// If we're using absolute number then we don't have to resize the tmp pop.
int
GADemeGA::setptr(const char* name, const void* value){
int status = GAGeneticAlgorithm::setptr(name, value);
if(strcmp(name, gaNnPopulations) == 0 ||
strcmp(name, gaSNnPopulations) == 0){
nPopulations(*((int*)value));
status = 0;
}
else if(strcmp(name, gaNnMigration) == 0 ||
strcmp(name, gaSNnMigration) == 0){
nMigration(*((int*)value));
status = 0;
}
return status;
}
int
GADemeGA::get(const char* name, void* value) const {
int status = GAGeneticAlgorithm::get(name, value);
if(strcmp(name, gaNnPopulations) == 0 ||
strcmp(name, gaSNnPopulations) == 0){
*((int*)value) = npop;
status = 0;
}
else if(strcmp(name, gaNnMigration) == 0 ||
strcmp(name, gaSNnMigration) == 0){
*((int*)value) = nmig;
status = 0;
}
return status;
}
void
GADemeGA::objectiveFunction(int i, GAGenome::Evaluator f){
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
for(int jj=0; jj<deme[ii]->size(); jj++)
deme[ii]->individual(jj).evaluator(f);
else
for(int jj=0; jj<deme[i]->size(); jj++)
deme[i]->individual(jj).evaluator(f);
}
void
GADemeGA::objectiveData(int i, const GAEvalData& v){
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
for(int jj=0; jj<deme[ii]->size(); jj++)
deme[ii]->individual(jj).evalData(v);
else
for(int jj=0; jj<deme[i]->size(); jj++)
deme[i]->individual(jj).evalData(v);
}
const GAPopulation&
GADemeGA::population(int i, const GAPopulation& p) {
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
*deme[ii] = p;
else
*deme[i] = p;
return *deme[((i==ALL) ? 0 : i)];
}
int
GADemeGA::populationSize(int i, unsigned int value){
if(value < 1){
GAErr(GA_LOC, className(), "populationSize", gaErrBadPopSize);
value = 1;
}
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
deme[ii]->size(value);
else
deme[i]->size(value);
return value;
}
int
GADemeGA::nReplacement(int i, unsigned int value){
if(i == ALL) {
for(unsigned int ii=0; ii<npop; ii++){
if(value > (unsigned int)deme[ii]->size())
GAErr(GA_LOC, className(), "nReplacement", gaErrBadPRepl);
else {
params.set(gaNnReplacement, (unsigned int)value);
nrepl[ii] = value;
}
}
}
else {
if(value > (unsigned int)deme[i]->size())
GAErr(GA_LOC, className(), "nReplacement", gaErrBadNRepl);
else
nrepl[i] = value;
}
if((unsigned int)(tmppop->size()) < value) {
tmppop->size(value);
}
return value;
}
GAScalingScheme&
GADemeGA::scaling(int i, const GAScalingScheme & s){
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
deme[ii]->scaling(s);
else
deme[i]->scaling(s);
return deme[((i==ALL) ? 0 : i)]->scaling();
}
GASelectionScheme&
GADemeGA::selector(int i, const GASelectionScheme& s){
if(i == ALL)
for(unsigned int ii=0; ii<npop; ii++)
deme[ii]->selector(s);
else
deme[i]->selector(s);
return deme[((i==ALL) ? 0 : i)]->selector();
}
int
GADemeGA::nMigration(unsigned int n) {
params.set(gaNnMigration, (unsigned int)n);
return nmig = n;
}
// change the number of populations. try affect the evolution as little as
// possible in the process, so set things to sane values where we can.
int
GADemeGA::nPopulations(unsigned int n) {
if(n < 1 || n == npop) return npop;
if(n < npop) {
for(unsigned int i=n; i<npop; i++)
delete deme[i];
GAPopulation** ptmp = deme;
deme = new GAPopulation* [n];
memcpy(deme, ptmp, n * sizeof(GAPopulation*));
delete [] ptmp;
GAStatistics* stmp = pstats;
pstats = new GAStatistics[n];
for(unsigned int j=0; j<n; j++)
pstats[j] = stmp[j];
delete [] stmp;
int* rtmp = nrepl;
nrepl = new int[n];
memcpy(nrepl, rtmp, n * sizeof(int));
delete [] rtmp;
npop = n;
}
else {
GAPopulation** ptmp = deme;
deme = new GAPopulation* [n];
memcpy(deme, ptmp, npop * sizeof(GAPopulation*));
delete [] ptmp;
for(unsigned int i=npop; i<n; i++)
deme[i] = new GAPopulation(*deme[GARandomInt(0,npop-1)]);
GAStatistics* stmp = pstats;
pstats = new GAStatistics[n];
for(unsigned int j=0; j<npop; j++)
pstats[j] = stmp[j];
delete [] stmp;
int* rtmp = nrepl;
nrepl = new int[n];
memcpy(nrepl, rtmp, npop * sizeof(int));
for(unsigned int k=npop; k<n; k++)
nrepl[k] = nrepl[0];
npop = n;
}
params.set(gaNnPopulations, (unsigned int)n);
pop->size(npop);
return npop;
}
int
GADemeGA::minimaxi(int m) {
if(m == MINIMIZE){
tmppop->order(GAPopulation::LOW_IS_BEST);
for(unsigned int i=0; i<npop; i++)
deme[i]->order(GAPopulation::LOW_IS_BEST);
}
else{
tmppop->order(GAPopulation::HIGH_IS_BEST);
for(unsigned int i=0; i<npop; i++)
deme[i]->order(GAPopulation::HIGH_IS_BEST);
}
return GAGeneticAlgorithm::minimaxi(m);
}
// We only use the sexual mating, so only check for that one. Initialize each
// of the popultions and set stats appropriately.
void
GADemeGA::initialize(unsigned int seed) {
GARandomSeed(seed);
for(unsigned int i=0; i<npop; i++) {
deme[i]->initialize();
deme[i]->evaluate(gaTrue);
pstats[i].reset(*deme[i]);
pop->individual(i).copy(deme[i]->best());
}
pop->touch();
stats.reset(*pop);
if(!scross) GAErr(GA_LOC, className(), "initialize", gaErrNoSexualMating);
}
// To evolve the genetic algorithm, we loop through all of our populations and
// evolve each one of them. Then allow the migrator to do its thing. Assumes
// that the tmp pop is at least as big as the largest nrepl that we'll use.
// The master population maintains the best n individuals from each of the
// populations, and it is based on those that we keep the statistics for the
// entire genetic algorithm run.
void
GADemeGA::step() {
int i, mut, c1, c2;
GAGenome *mom, *dad;
float pc;
GAPopulation *mypop; // inserted by Iavor Trifonov
if(!scross) pc = 0.0;
else pc = pCrossover();
for(unsigned int ii=0; ii<npop; ii++) {
mypop = new GAPopulation(deme[ii]->individual(0), nrepl[ii]); // inserted by Iavor Trifonov
for(i=0; i<nrepl[ii]-1; i+=2){ // takes care of odd population
mom = &(deme[ii]->select());
dad = &(deme[ii]->select());
pstats[ii].numsel += 2;
c1 = c2 = 0;
if(GAFlipCoin(pc)){
pstats[ii].numcro += (*scross)(*mom, *dad, &mypop->individual(i),
&mypop->individual(i+1));
c1 = c2 = 1;
}
else{
mypop->individual( i ).copy(*mom);
mypop->individual(i+1).copy(*dad);
}
pstats[ii].nummut += (mut=mypop->individual( i ).mutate(pMutation()));
if(mut > 0) c1 = 1;
pstats[ii].nummut += (mut=mypop->individual(i+1).mutate(pMutation()));
if(mut > 0) c2 = 1;
pstats[ii].numeval += c1 + c2;
}
if(nrepl[ii] % 2 != 0){ // do the remaining population member
mom = &(deme[ii]->select());
dad = &(deme[ii]->select());
pstats[ii].numsel += 2;
c1 = 0;
if(GAFlipCoin(pc)){
pstats[ii].numcro +=
(*scross)(*mom, *dad, &mypop->individual(i), (GAGenome*)0);
c1 = 1;
}
else{
if(GARandomBit()) mypop->individual(i).copy(*mom);
else mypop->individual(i).copy(*dad);
}
pstats[ii].nummut += (mut=mypop->individual(i).mutate(pMutation()));
if(mut > 0) c1 = 1;
pstats[ii].numeval += c1;
}
for(i=0; i<nrepl[ii]; i++)
deme[ii]->add(&mypop->individual(i));
deme[ii]->evaluate();
deme[ii]->scale();
for(i=0; i<nrepl[ii]; i++)
mypop->replace(deme[ii]->remove(GAPopulation::WORST,
GAPopulation::SCALED), i);
pstats[ii].numrep += nrepl[ii];
delete mypop; // inserted by Iavor Trifonov
}
migrate();
for(unsigned int jj=0; jj<npop; jj++) {
deme[jj]->evaluate();
pstats[jj].update(*deme[jj]);
}
stats.numsel = stats.numcro = stats.nummut = stats.numrep = stats.numeval=0;
for(unsigned int kk=0; kk<npop; kk++) {
pop->individual(kk).copy(deme[kk]->best());
stats.numsel += pstats[kk].numsel;
stats.numcro += pstats[kk].numcro;
stats.nummut += pstats[kk].nummut;
stats.numrep += pstats[kk].numrep;
stats.numeval += pstats[kk].numeval;
}
pop->touch();
stats.update(*pop);
for(unsigned int ll=0; ll<npop; ll++)
stats.numpeval += pstats[ll].numpeval;
}
// This implementation uses an island model for parallel populations in which
// each population migrates a certain number of individuals to its nearest
// neighbor (I've heard of this referred to as the 'stepping-stone' model).
// In this implementation we migrate the best individuals only. This assumes
// that all populations have at least nmig individuals (we don't do any checks
// for conflicts).
void
GADemeGA::migrate() {
GAGenome **ind;
ind = new GAGenome* [nmig];
unsigned int j;
for(j=0; j<nmig; j++)
ind[j] = &(deme[0]->individual(j));
for(unsigned int i=1; i<npop; i++) {
for(j=0; j<nmig; j++)
ind[j] = deme[i]->replace(ind[j], j);
}
for(j=0; j<nmig; j++)
deme[0]->replace(ind[j], j);
delete [] ind;
}
More information about the galib
mailing list