
1

Large Scale Aerospace Software
Development

Heidi Perry
Draper Laboratory
Unified Lecture 23

May 12, 2004

2

What Software Do You Need to Get To Mars?

Today’s aerospace applications are extremely software intensive. The designs of
all modern flight platforms, e.g. aircraft, rotorcraft, submersibles, missiles and
spacecraft, have been revolutionized because of the integration of advanced
microelectronics and complex sensor systems. All of these systems extensively
use information generated by a myriad of sensor subsystems that are highly
integrated into a real-time embedded software architecture. This lecture will
explore what it takes to develop large scale software for a number of examples of
highly reliable, flight critical software applications.

3

Software for planetary science

4

Software in an Ideal Solar System

• Software life cycle
– Requirements
– Analysis
– Design
– Unit Code
– System Build
– Test
– Deliver / Integrate
– Fly / Run

5

Software in the Real Solar System

• Requirements
• Analyze
• Iterate Requirements
• Analyze
• Design
• Iterate Requirements
• Analyze
• Design
• Code
• Requirements Creep
• Analyze Design Code Test Fail
• Analyze Design Code Test Build
• Test Code Build Test
• Deliver test code test launch test code

test test test test

6

Example: Mars Rovers (Pathfinder, MER)

• Requirements:
– Land Safely
– Take a picture
– Deploy the Rover
– Analyze dirt and rocks
– Send more pictures and

analysis data

• Analysis
– “Land Safely” means that

airbags can’t pop, so we have
to limit mass, so we can only
have one processor and one
memory board, so… add
requirement on limiting all
FSW to space available

7

Example (continued)
• Requirements:

– Land Safely using only one processor
– Take a picture
– Deploy the Rover
– Analyze dirt and rocks
– Send more pictures and analysis

• Analysis
– With mass limiting memory available,

can only take so many pictures before
we have to stop and downlink data to
Earth

• Design
– This part of memory for scratch
– This part for science data
– Take color picture and process data for 2

seconds
– Downlink to Earth for 1 hour

BUT we only get 10 minutes of downlink
time that first day, so we can only send
back a B&W photo…

Our model:
Viking 1 1976

8

Example (cont)

• Requirements:
• Analysis
• Design
• Code code code code

In system review, someone asks:
What if it lands on its head?

• New requirement: System has
to be able to turn itself over
before it opens up completely,
and do it before the battery
power runs out

Land upside down

Open heavy side (with rover)
Just enough to shift CG
And start to tilt…

It flops over…

Keep pushing until
It flops upright

9

Example (cont)

• Requirements Creep
• Analyze
• Design
• Code
• Test
• Fail

Rover communication with the
lander isn’t working; turns out
they aren’t using the same
comm protocols!

Analyze code test test test test

Lander ta
lks to Earth

Rover talks to Lander

10

Example (cont)

• Test test code test

• Deliver

ROVER still has never
stood up and crawled off
the Lander on its own!

• Test test test test

• Rebuild hardware test
test test test…

11

Example (cont)

• OUT OF TIME
– Planets only line up

briefly every 2 years,
so we have to
launch….

• LAUNCH

• Test test test test

• Uplink

• Test test test test

Non-flight rover was used to
test out new software in a
Mars simulator dubbed the
“sandbox”

12

SUCCESS!
So many rocks, so little time….
Science team comes up
with an idea to test soil
adhesion by locking 4
wheels and spinning one
so we’re back to…
Requirements

Design
Analysis

Code
Test

13

A look at software complexity

• What software does it take to implement a
mission to Mars?
– Analysis SW

– Simulation SW

– Spacecraft SW

– Ground SW

14

Sample Spacecraft Flight Software Components

FSW
CSCI

Initialization

OS

VxWorks

BSP

ISR

I/O Drivers

Mode
Control

Mission
Manager

Scheduler

Command
Processor

GN&C

Navigation

Guidance

Flight
Control

Telemetry
Manager

Antenna
Switching

Science
Manager

Initialization

Calibration

S/W Upload

System
Services

Init & Config

S/C
Manager

Power Ctrl.

Interleaving

Data Mgmt

Downlink

Math LibraryHealth Mon.

Data Acq

Initialization

Calibration

Power Ctrl.

Health Mon.

Data Acquisition

Fault Mgmt

GN&C

Mission Mgr

Telemetry

Science Mgr

System Svcs

Spacecraft Mgr

B
us

P
ro

c
O

S
A

P
I

A
pp

lic
at

io
ns

C&DH Processor

Application Program Interface

Commercial or
Home-Grown OS

I/O
Drivers

Rad-Hard Processor

Computer Data Path

15

Source Lines of Code

• Small Scale: < 15K SLOC
– Autonomous Helicopter Software

• Medium Scale:15K-100KSLOC
– Satellite Mission Software
– Submarine GN&C Software
– Spacecraft Flight Software

• Large Scale: >100 KSLOC
– Collaborative Unmanned Aircraft Systems (J-UCAS)
– Complex Avionics Systems (F-22)

16

UGV (Pioneer AT)UGV (Pioneer AT)

UAV (DSAAV)UAV (DSAAV)

VCU
(Vehicle Control Unit)

VCU
(Vehicle Control Unit)

Small Scale: Autonomous Helicopter

17

Draper Air Vehicle Research Platform

(6 ft diameter main rotor)

GPS antenna

Bergen Twin Industrial Helicopter

Receiver/servo
interface

Sonar Altimeter

Avionics

Compass

Payload
Sensor

Bay

Comm Antenna

Unmanned Air Vehicle [UAV]

18

•• UAV collects & UAV collects & geolocatesgeolocates
images for UGV deploymentimages for UGV deployment

•• UGV autonomously transits UGV autonomously transits
from deployment to destination from deployment to destination
objectiveobjective

•• Mission plan for both vehicles Mission plan for both vehicles
generated & uploaded from generated & uploaded from
common control stationcommon control station

Destination ObjectiveDestination Objective

Deployment ObjectiveDeployment Objective

Geolocation & Map Geolocation & Map
RegistrationRegistration

Common Control Common Control
StationStation

System Concept: Cooperative UAV/UGV
Reconnaissance

19

OS [Linux]
Data Manager

Laptop Computer
Vehicle

Microcontroller

GPS
Receiver

Communications
Hardware

Video

PCMCIA

Serial

Parallel

Autonomous Platform

Software Architecture

• A common, modular, reusable, component-based architecture has been
developed

• Interfaces between modules are standardized so that changes can easily be
made

22

Large Scale Software – F22
• The software that provides the avionics system's full functionality is
composed of approximately 1.7 million lines of code.

• Ninety percent of the software is written in Ada, the Department of
Defense's common computer language.

• Exceptions to the Ada requirement are granted only for special
processing or maintenance requirements.

Data courtesy of Lockheed Martin

23

Large Scale Software – F22
The avionics software is to be integrated in blocks, each building on the
capability of the previous block.

Block 1
• Primarily radar capability
• Contains more than 50 percent of the avionics suite's full functionality
source lines of code (SLOC)
• Provides end-to-end capability for the sensor-to-pilot data flow.

Block 2
• Start of sensor fusion.
• Adds radio frequency coordination, reconfiguration, and some electronic
warfare functions.

Block 3
• Encompasses full sensor fusion
• Includes embedded training capability
• Provides for electronic counter-counter measures (ECCM).

Data courtesy of Lockheed Martin

24

Large Scale Software – F22

Block 3.1
• Adds full GBU-32 Joint Direct Attack Munition (JDAM) launch capability
• Adds Joint Tactical Information Distribution System (JTIDS) receive-only

Block 4 software (as proposed)
• Scheduled to be integrated on the Initial Operational Capability (IOC) F-22s
• Likely to include…

• helmet-mounted cueing
• AIM-9X integration
• JTIDS-send capability.

Data courtesy of Lockheed Martin

25

How are these applications similar?

• Each requires robust, real-time software

• Development is carefully planned

• Test is an essential part of the
development process

26

The Software Life Cycle

• Waterfall

• Incremental

• Evolutionary

• Spiral

27

Initiation and
Concept

Requirements

Preliminary
Design

Detailed Design

Implementation
and Test

Integration and Test

Acceptance and
Delivery

Sustaining
Engineering

P
D
R

C
D
R

T
R
R

S
A
R

P
R
R

S
S
R

STANDARD WATERFALL LIFE CYCLE MODEL

Life Cycle Choices -- Waterfall

28

Initia tion and
Conc e pt

Re quire me nts

Pre liminary
De s ign

De ta ile d
De s ign

Imple me ntation
and Te s t

Inte gration
and Te s t

S us ta ining
Engine e ring

Ac c e ptanc e
and De live ryInc re me nta l

De ve lopme ntInc re me nta l
De ve lopme ntInc re me nta l

De ve lopme ntInc re me nta l
De ve lopme nt

P
R
R

S
S
R

P
D
R

Ac c e ptanc e
and De live ry

T
R
R

S
A
R

INCREMENTAL SOFTWARE LIFE CYCLE MODEL

Life Cycle Choices -- Incremental

29

Initiation
and
Concept

Requirements

Preliminary
Design

Detailed
Design

Implementation and
Test

Integration and
Test

Acceptance and
Delivery

Sustaining
Engineering

Acceptance and
Delivery

Evolutionary
Development

Evolutionary
Development

Evolutionary
Development

Evolutionary
Development

P
R
R

T
R
R

S
A
R

Life Cycle Choices -- Evolutionary

EVOLUTIONARY SOFTWARE LIFE CYCLE MODEL

30

Implementation and
Test

Integration and Test

Acceptance and
Delivery

Sustaining
Engineering

Initiation and
Concept Cycle

Requirements
Cycle

Preliminary Design
Cycle

Detailed Design Cycle

Determine Objectives

Risk Analysis

Prototype

Phase Results

Planning for Next
Phase

Life Cycle Choices -- Spiral

SPIRAL SOFTWARE LIFE CYCLE MODEL

31

Real Time System Testing

SW
Requirements

SW
Design

Code

Tests
Acceptance

Tests /
Delivery

User

50%

50%

• Testing is an important part of the software life cycle
• Testing can take up to 50% of a project’s budget and schedule

32

Why is there so much Test Test Test?

% SW
errors
found

Time

100

Formal Methods

SW Test

∆T

• Real Time software must
be evaluated in its intended
environment

• Aerospace applications
are often unforgiving of
failure

• More needs to be done to
model real time system
behavior in the design
phase

33

Closing Remarks

• Well-developed robust software is critical to aerospace mission success

– Robust: Mars Rover (Flash overrun issue, Priority Inversion, etc.)

– Well Developed: A controlled software process for large scale software
development is absolutely essential

• Aerospace software is fun

– Real “toys”

– Real world interfaces to sensor suites, etc.

– Opportunity to collaborate with end-users to solve aerospace problems
(pilots, scientists, astronauts, etc.)

• Aerospace Software Engineers are critical to systems integration and
eventual mission success

