
 

 

 

�

�

�

� ������� �	
���
���������������

������������
������������

��������������  ��!�

�

�

Jocelyn Dart, 11.10.2004, Technology white paper 

 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 2 of 11 

Table of Contents 
 

1 HISTORICAL PERSPECTIVE (ABAP OO VERSUS BOR) .........................................................................3 
2 THE FACTORY CALENDAR DEADLINE EXAMPLE................................................................................3 
3 DEFINING ABAP OO CLASSES FOR WORKFLOW ..................................................................................4 

3.1 CLASS DEFINITION – WORKFLOW BASICS ......................................................................................................4 
3.2 CLASS DEFINITION – WORKFLOW METHODS .................................................................................................5 

4 USING ABAP OO METHODS IN WORKFLOW TASKS.............................................................................7 
5 CALLING THE TASK FROM THE WORKFLOW.......................................................................................9 
6 FUTURE DIRECTION.....................................................................................................................................11 
7 FURTHER INFORMATION ...........................................................................................................................11 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 3 of 11 

 

1 Historical Perspective (ABAP OO versus BOR) 
Having a history of effective Enterprise Resource Planning solutions, the need for Business Process 
Management (a way of controlling and monitoring business processes across different teams and 
different functional areas) had been recognised within SAP for a considerable number of years.  Although 
some exploratory attempts were made in R/3 release 2.0, the first concerted effort to provide Business 
Process Management services came with the introduction of SAP Business Workflow in R/3 release 3.0C.   
 
At the time SAP Business Workflow was introduced, object oriented programming was still more of an 
ideal than a reality within ABAP; however it was clear that object oriented techniques were the way of the 
future and critical to underpin workflow if workflow were to provide efficient and effective services.  As a 
consequence, SAP Business Workflow was delivered with an approximation of object oriented 
programming called the Business Object Repository (BOR).   
 
The aim of the BOR was clearly to provide object oriented –style techniques and services in systems that 
were not yet capable of object oriented programming.  Major strengths of the BOR was in how well it 
provided object oriented capabilities - such as inheritance, delegation, association, and polymorphism – 
to such an extent that it wasn’t until R/3 release 4.6C that similar depth of object oriented capabilities was 
available in ABAP OO, and not until SAP WAS 6.20 that ABAP OO was able to be integrated with SAP 
Business Workflow to the same degree as the BOR. 
 
However it was clear from the beginning that the BOR was not intended as a long term solution.  Even 
the way in which the BOR uses macros to provide ABAP code fragments that could be replaced later, 
when ABAP OO was available, was a clear indication that the BOR was intended to have a limited life.  
However the need for workflow services outstripped the introduction of ABAP OO, and by the time ABAP 
OO was fully available and capable of replacing the BOR, a large body of business content had already 
been provided by the BOR.  It was no longer a simple matter of replacing code fragments in macros - a 
major effort would be needed to convert existing workflow content from the BOR to ABAP OO.  
 
Currently the effort required to convert the existing body of BOR content to ABAP OO, and the disruption 
to customers that would be caused by such a major change in direction, exceeds the ROI of such an 
activity.  However the option of using ABAP OO in workflow has been added.  Already new features in 
Business Process Management (BPM), such as ccBPM (cross-component BPM) in SAP XI (Exchange 
Infrastructure) are taking advantage of this new option.   
 
Hopefully over time a gradual move from the BOR to ABAP OO can be encouraged in SAP Business 
Workflow.  This whitepaper is intended to assist with this move. 
 
This whitepaper deals in particular with understanding how to create workflow utility classes/methods 
using ABAP OO. 
 
Throughout this whitepaper the example used is the calculation of deadlines based on factory calendars 
(rather than absolute days).  This example has been used as it is a common and relatively well known 
utility function needed for workflows.  However the principles described within this whitepaper are the 
same for any utility function.  
 

2 The Factory Calendar Deadline Example  
By default, all deadlines in workflow use an absolute calendar.   That is: if the deadline is based on start 
time = Friday at 8 a.m., and the deadline period is 2 days, then the deadline will be raised on the following 
Sunday at 8 a.m.    
 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 4 of 11 

As many businesses do not work on weekends a more desirable calculation does not consider the 
weekend dates as possible working days.  That is: if the deadline is based on start time = Friday at 8 
a.m., and the deadline period is 2 days, then the deadline will be raised on the following Tuesday 
(ignoring Saturday and Sunday) at 8 a.m.    
 
This example can be further extended to Public Holidays, for example when Monday is a public holiday.  
That is: if the deadline is based on start time = Friday at 8 a.m., and the deadline period is 2 days, then 
the deadline will be raised on the following Wednesday (ignoring Saturday, Sunday and Monday) at 8 
a.m.    
 
In SAP systems, working versus non-working days are identified by maintaining factory calendars (and 
holiday calendars) in transaction SCAL.  
 
Once maintained, the calculation of the end date/time in the above scenarios becomes a simple matter of 
calling function module END_TIME_DETERMINE, passing the factory calendar id, the start date/time, 
and the deadline period. 
 
To use function module END_TIME_DETERMINE in a workflow it must be encapsulated with a method of 
ABAP class or a BOR (Business Object Repository) object.   
 
A workflow “standard task” must then be created to control the class/method call and to pass the import 
parameters from the workflow container to the method container, and the export parameters from the 
method container to the workflow container.  
 
Once the deadline dates/times are passed to the workflow container, calculated deadline dates/times can 
then be included in the deadline tab of activity workflow steps using deadline “Expressions”.  
 
As using factory calendars and factory calendar deadlines within a workflow is well documented, this 
whitepaper focuses only with the ABAP OO-related steps in this process that would replace equivalent 
BOR steps.  That is: 
 

1. Creating a workflow-relevant ABAP OO class 
2. Creating an ABAP OO instance-independent method  
3. Including the ABAP OO method in a workflow standard task  

 

3 Defining ABAP OO classes for Workflow 
 
3.1 Class Definition – Workflow Basics  
 

ABAP OO classes are defined in transaction SE24.  As a 
general rule, it is recommended to implement separate 
classes for dealing with workflow, rather than include them 
in classes used for other purposes.  This is mainly to avoid 
confusion and conflicts with non-workflow related coding.   
To use the class within workflow it must be a “Usual ABAP 
Class” and not a modelled class.  Setting of the “Final” 
option (to control whether subclasses) are allowed is 
optional. 
 
 
 
 
 

When defining an ABAP OO class to be used with workflow there is only one major requirement: 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 5 of 11 

 
The ABAP OO class MUST implement the interface IF_WORKFLOW.  

 
This is done by adding the interface IF_WORKFLOW on the interfaces tab of transaction SE24. 

 
 
 
 
 
.  
 
 
 
 
 

 
Adding interface IF_WORKFLOW, automatically inherits interfaces BI_OBJECT and BI_PERSISTENT, 
and with them the following methods: 
 

• BI_PERSISTENT~FIND_BY_LPOR 
• BI_PERSISTENT~LPOR 
• BI_PERSISTENT~REFRESH 
• BI_OBJECT~DEFAULT_ATTRIBUTE_VALUE 
• BI_OBJECT~EXECUTE_DEFAULT_METHOD  
• BI_OBJECT~RELEASE 

 
These methods are only relevant for instance-dependent classes.  With a utility class they are not 

needed. However workflow 
expects these methods to be 
available in every class that 
implements workflow, so to 
avoid runtime errors, each of 
these methods should be 
activated.  For a workflow utility 
class, it’s sufficient to activate 
the methods without adding any 
other coding to them.  
 

 
 
 
3.2 Class Definition – Workflow Methods 
 
For workflow utility classes, methods can be created like any other method in an ABAP OO class.  Of 
course, the signature of the method must contain the import parameters to be passed from workflow and 
the export parameters to be passed to workflow.   The method coding itself is encapsulated in the class.    
 
There are no special requirements on the method coding, unless you are referencing BOR objects (this 
will be dealt with in a separate whitepaper.  
 
There are no “dialog”, “synchronous”, or “result” flags, or result parameters as are found on BOR objects.    
 
The method must of course be “Static” (so that it can be called without first instantiating the class) and 
“Public”  (so that it can be used outside of the class).  



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 6 of 11 

 
 
In the factory deadline calculation example, a CALCULATE_DEADLINE method is created to import the 
deadline start time, deadline period, and the factory calendar id.  The method will call the function module 
END_TIME_DETERMINE, and then export the calculated date.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The coding is a simple matter of calling the function module.  No exceptions are raised in this example.  
(How to deal with exceptions will be covered in a future whitepaper).  
 
��������	
��
	���	�
�����
�
���������	�������	
��	������������������
������������������ �������������!���� �
�������"#�!���$�
�����������	�����������������������%�������	�����
�����������������������������������%������&������
���������	�������	
��	������������%�����	�������	
��	��
��������#�!���$�
������������	��������������������%�������	��
�������������&�������������������%��������&�
����������$��$�
��������'�	����	������������������%����'�	����	��
��������'�	�����&�����������������%����'�	�����&�
�������"��#������
���������	�������	
��	������������%�(�
���������	����������	
��	���	�)�%�*�
���������	�������	
���������������%�+�
������������������'��������������%�,�
��������'�������&�''��)������������%�-�
��������.	�	&��'�����	
����������%�/�



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 7 of 11 

������������!����������������������%�0��
��������
������������������ �������������!���� �
�����"#�!���$�
���������	�����������������������������%�������	�����
���������������������������������������%������&������
1�����������!2��������!�����������������%�����	�������	
��	��
������#�!���$�
����������	��������������������������%�������	��
�����������&�������������������������%��������&�
��������$��$�
������'�	����	������������������������%����'�	����	��
������'�	�����&�����������������������%����'�	�����&�
�����"��#������
�������	�������	
��	������������������%�(�
�������	����������	
��	���	�)�������%�*�
�������	�������	
���������������������%�+�
����������������'��������������������%�,�
������'�������&�''��)������������������%�-�
������.	�	&��'�����	
����������������%�/�
����������!����������������������������%�0�
��������������
���������
�����'�3'�4���56�7��
����������	��%����'�	����	���
�����������&�%����'�	�����&��
���������
�
�
�����������

 
Of course both the method and the class must be activated before they can be used.   
 
As always, it’s a good idea to test the class/method in transaction SE24 before including it in the workflow 
standard task.  
 

4 Using ABAP OO methods in workflow tasks 
ABAP OO methods are included in workflow standard tasks in a very similar way to BOR methods.  The 
main differences are: 

• The object category is “ABAP Class”  
• The “dialog” and “synchronous” flags must be specified in the task  (as they are not available at 

the class/method). 
 
New workflow standard tasks are created using transaction PFTC_INS by selecting the task type 
“Standard Task” and pressing the “Create” icon.  

 
When creating the class, specify the object category “ABAP Class” then select the ABAP Class and 
method.  Note: Only ABAP Classes that have implemented the interface IF_WORKFLOW can be 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 8 of 11 

selected.  Additional parameters will be copied as usual when “Yes” is answered to the question “Transfer 
missing elements from the object method?”.  
 

 
 
Specify that the method is to be run in Background by turning on the “Background Processing” flag.  Note: 
You must save the task before you can turn on the “Synchronous object method” flag.  
 

 
 
Container elements of the task, including attributes of the ABAP class, can be included in the work item 
text and description by using the “Insert Expression” option as usual.  
 

 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 9 of 11 

 
As always, it’s a good idea to test the new task using transaction SWUS before including it in a workflow. 
 

5 Calling the task from the workflow 
 
 
Calling a standard task based on an ABAP OO class/method is no different to calling a standard task 
based on BOR.  
 
Workflows are created and maintained using transaction SWDD.  
 
Use an activity step to call the new task.  
 
The task can be found using the search dialog.  Note: In 6.20  the Object Type and Method tab in the task 
search dialog does not work.   

 
 
 
Bindings can be generated automatically or entered manually as usual.  
 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 10 of 11 

 
 
In the binding definition you can either provide workflow container elements or pass constants to fill the 
import parameters with appropriate values.   Note: The conversion of the field and the help depends on 
the definition of the individual fields, e.g. to set the time unit to DAY the technical id TAG is entered. 
 

 
 
The values passed back to the workflow container can then be used in subsequent steps of the workflow 
as usual.  
 



Workflow Utility Classes using ABAP OO  
 

Jocelyn Dart:  
Last updated: 10 October 2004  Page 11 of 11 

 

6 Future Direction 
Writing utility classes using the Business Object Repository has always been awkward.  As ABAP OO is 
easier to use for utility classes, by preference, ABAP OO should be used for utility classes instead of the 
BOR.  

7 Further information 
Further information can be found in OSS using component id BC-BMT-WFM and in the SAP Library Help 
under SAP Web Application Server -> Business Process Management.  
 
 


