SAP

Workflow Utility Classes using
ABAP 0O (Factory Calendar
Deadlines Example)

Jocelyn Dart, 11.10.2004, Technology white paper

Workflow Utility Classes using ABAP OO

Table of Contents

1 HISTORICAL PERSPECTIVE (ABAP OO VERSUS BOR) 3

2 THE FACTORY CALENDAR DEADLINE EXAMPLE

3 DEFINING ABAP OO CLASSES FOR WORKFLOW 4
3.1 CLASS DEFINITION — WORKFLOW BASICSccutiiiiiiieiiiieiie ittt sttt et ettt s sbe et 4
3.2 CLASS DEFINITION — WORKFLOW METHODSc..teittettiititeritenitenieenieeteetesetessaesteenseesesssesseesmeesseensesnsesuenn 5

4 USING ABAP OO METHODS IN WORKFLOW TASKS 7

5 CALLING THE TASK FROM THE WORKFLOW 9

6 FUTURE DIRECTION 11

7 FURTHER INFORMATION 11

Jocelyn Dart:

Last updated: 10 October 2004 Page 2 of 11

Workflow Utility Classes using ABAP OO w

1 Historical Perspective (ABAP OO versus BOR)

Having a history of effective Enterprise Resource Planning solutions, the need for Business Process
Management (a way of controlling and monitoring business processes across different teams and
different functional areas) had been recognised within SAP for a considerable number of years. Although
some exploratory attempts were made in R/3 release 2.0, the first concerted effort to provide Business
Process Management services came with the introduction of SAP Business Workflow in R/3 release 3.0C.

At the time SAP Business Workflow was introduced, object oriented programming was still more of an
ideal than a reality within ABAP; however it was clear that object oriented techniques were the way of the
future and critical to underpin workflow if workflow were to provide efficient and effective services. As a
consequence, SAP Business Workflow was delivered with an approximation of object oriented
programming called the Business Object Repository (BOR).

The aim of the BOR was clearly to provide object oriented —style techniques and services in systems that
were not yet capable of object oriented programming. Major strengths of the BOR was in how well it
provided object oriented capabilities - such as inheritance, delegation, association, and polymorphism —
to such an extent that it wasn’t until R/3 release 4.6C that similar depth of object oriented capabilities was
available in ABAP OO, and not until SAP WAS 6.20 that ABAP OO was able to be integrated with SAP
Business Workflow to the same degree as the BOR.

However it was clear from the beginning that the BOR was not intended as a long term solution. Even
the way in which the BOR uses macros to provide ABAP code fragments that could be replaced later,
when ABAP OO was available, was a clear indication that the BOR was intended to have a limited life.
However the need for workflow services outstripped the introduction of ABAP OO, and by the time ABAP
OO was fully available and capable of replacing the BOR, a large body of business content had already
been provided by the BOR. It was no longer a simple matter of replacing code fragments in macros - a
major effort would be needed to convert existing workflow content from the BOR to ABAP OO.

Currently the effort required to convert the existing body of BOR content to ABAP OO, and the disruption
to customers that would be caused by such a major change in direction, exceeds the ROI of such an
activity. However the option of using ABAP OO in workflow has been added. Already new features in
Business Process Management (BPM), such as ccBPM (cross-component BPM) in SAP Xl (Exchange
Infrastructure) are taking advantage of this new option.

Hopefully over time a gradual move from the BOR to ABAP OO can be encouraged in SAP Business
Workflow. This whitepaper is intended to assist with this move.

This whitepaper deals in particular with understanding how to create workflow utility classes/methods
using ABAP OO.

Throughout this whitepaper the example used is the calculation of deadlines based on factory calendars
(rather than absolute days). This example has been used as it is a common and relatively well known
utility function needed for workflows. However the principles described within this whitepaper are the
same for any utility function.

2 The Factory Calendar Deadline Example

By default, all deadlines in workflow use an absolute calendar. That is: if the deadline is based on start
time = Friday at 8 a.m., and the deadline period is 2 days, then the deadline will be raised on the following
Sunday at 8 a.m.

Jocelyn Dart:
Last updated: 10 October 2004 Page 3 of 11

Workflow Utility Classes using ABAP OO w

As many businesses do not work on weekends a more desirable calculation does not consider the
weekend dates as possible working days. That is: if the deadline is based on start time = Friday at 8
a.m., and the deadline period is 2 days, then the deadline will be raised on the following Tuesday
(ignoring Saturday and Sunday) at 8 a.m.

This example can be further extended to Public Holidays, for example when Monday is a public holiday.
That is: if the deadline is based on start time = Friday at 8 a.m., and the deadline period is 2 days, then
the deadline will be raised on the following Wednesday (ignoring Saturday, Sunday and Monday) at 8
a.m.

In SAP systems, working versus non-working days are identified by maintaining factory calendars (and
holiday calendars) in transaction SCAL.

Once maintained, the calculation of the end date/time in the above scenarios becomes a simple matter of
calling function module END_TIME_DETERMINE, passing the factory calendar id, the start date/time,
and the deadline period.

To use function module END_TIME_DETERMINE in a workflow it must be encapsulated with a method of
ABAP class or a BOR (Business Object Repository) object.

A workflow “standard task” must then be created to control the class/method call and to pass the import
parameters from the workflow container to the method container, and the export parameters from the
method container to the workflow container.

Once the deadline dates/times are passed to the workflow container, calculated deadline dates/times can
then be included in the deadline tab of activity workflow steps using deadline “Expressions”.

As using factory calendars and factory calendar deadlines within a workflow is well documented, this
whitepaper focuses only with the ABAP OO-related steps in this process that would replace equivalent
BOR steps. That is:

1. Creating a workflow-relevant ABAP OO class

2. Creating an ABAP OO instance-independent method
3. Including the ABAP OO method in a workflow standard task

3 Defining ABAP OO classes for Workflow

3.1 Class Definition — Workflow Basics

; ABAP OO classes are defined in transaction SE24. As a
— ZCL_WF_DEADLINE general rule, it i§ recqmmended to implement separate
Description classes for dealing with workflow, rather than include them
Instantiation 2Public @ in classes used for other purposes. This is mainly to avoid
confusion and conflicts with non-workflow related coding.
Class Type To use the class within workflow it must be a “Usual ABAP
© Usual ABAP Class Class” and not a modelled class. Setting of the “Final”
) Exception Class option (to control whether subclasses) are allowed is
' Persistent class optional.
JFinal
[] only modeled
¥ Save X

When defining an ABAP OO class to be used with workflow there is only one major requirement:

Jocelyn Dart:
Last updated: 10 October 2004 Page 4 of 11

Workflow Utility Classes using ABAP OO w

The ABAP OO class MUST implement the interface IF_WORKFLOW.

This is done by adding the interface IF_ WORKFLOW on the interfaces tab of transaction SE24.

Class Builder: Change Class ZCL_WF_DEADLINE
2| %N 8| &80T H| B yes B impementation B

Class interface ZCL_WF_DEADLIME Implemented § Active
Interfaces k Friends k Aftributes k Methods k Events k Internal types k Alia

== [IFitter

Interface Ahstract [Final hodele..|Description

T_OHJECT: Business Instance
BI_PERSISTENT Persistent Business Instance
IF_WORKFLOW

Froperties .

Business Workflow

o]
1 o} [}
o o} o]

Adding interface IF_WORKFLOW, automatically inherits interfaces BI_OBJECT and BI_PERSISTENT,
and with them the following methods:

BI_PERSISTENT~FIND_BY_LPOR
BI_PERSISTENT~LPOR
BI_PERSISTENT~REFRESH
BI_OBJECT~DEFAULT_ATTRIBUTE_VALUE
BI_OBJECT~EXECUTE_DEFAULT_METHOD
BI_OBJECT~RELEASE

These methods are only relevant for instance-dependent classes. With a utility class they are not
needed. However workflow
expects these methods to be
available in every class that

Class Builder: Class ZCL_WF_DEADIL INE Change
4= W&| Wf 2% EE” E?] i If',—" fa ﬁ, = | @ Fattern == Pretly Printer | Signature

Ty. |Parameter Type spec. Description imp'ements Workﬂow’ Yo} to
LFOR TYFPE SIBFLFOR Lacal Persistent Ohject Reference (LPOR) . .
ﬂg WALLIE{RESULT) TYPE REF TQ BI_PERSISTENT Persistent Business Instance aVOId runtlme errors’ eaCh Of

these methods should be
activated. For a workflow utility

Method BI_PERSISTEMT~FIND_BY_LFOR Aty

ol 2l mE class, it's sufficient to activate
nethod BI_PERSISTENT~FIND_BY LPOR . the methqu without addlng any
snenethos other coding to them.

3.2 Class Definition — Workflow Methods

For workflow utility classes, methods can be created like any other method in an ABAP OO class. Of
course, the signature of the method must contain the import parameters to be passed from workflow and
the export parameters to be passed to workflow. The method coding itself is encapsulated in the class.

There are no special requirements on the method coding, unless you are referencing BOR objects (this
will be dealt with in a separate whitepaper.

There are no “dialog”, “synchronous”, or “result” flags, or result parameters as are found on BOR objects.

The method must of course be “Static” (so that it can be called without first instantiating the class) and
“Public” (so that it can be used outside of the class).

Jocelyn Dart:
Last updated: 10 October 2004 Page 5 of 11

Workflow Utility Classes using ABAP OO w

Class Builder: Change Class ZCL_WF_DEADLINE
[e | [(1)@ = | €& [] | (S v | [mwtrentaton | [waos] [0

Class interface ZCL_WF_DEADLINE Implemented / Inactive
FProperties Interfaces Friends Aftributes hethods Ewents Internal types Aliases

o Parametersuﬂﬂ Exceptions "@ |@|l‘%’ EI@ % E‘ [H]ll}ﬁ CIFilter
Methods Level |Visi |Mo |M |Description
BI_PERSISTENT~FIND_BY_LPIStatic|Publ Find Using Local Persistent Object Reference
BI_PERSISTEMT~LPOR InstamPubl Local Persistent Object Reference
BI_PERSISTENT~REFRESH InstamPubl Flagto Reload from Database
BI_OBJECT~DEFAULT_ATTRIBIInstaruPubl alue of Default"Attribute” (as Data Reference)
BI_OBJECT~EXECUTE_DEFAULIInstarPubl Execute Default Methods

BI_OBJECT~RELEASE InstamPubl Release for Garbage Collector to Delete
CALCULATE_DEADLINE StaticlPubl)] Calculated factory calendar deadlines

O

In the factory deadline calculation example, a CALCULATE_DEADLINE method is created to import the
deadline start time, deadline period, and the factory calendar id. The method will call the function module
END_TIME_DETERMINE, and then export the calculated date.

Class Builder: Change Class ZCL_WF_DEADLINE
4= '§| bl EEH ga 1 @ ﬂ%’| FENEENES | B Types B Implementation B macros | [Cons

Class interface ZCL_WF_DEADLINE Implemented § Active
Properies k Interfaces k Friends k Atributes Methods k Events k Internal types k Aliases |

Meathad parameters CALCULATE_DEADLINE E|E|
4= Methods ||[51 Exceptions ‘E‘ E’@ FAEE
Parameter Type |P.. |C..|Typing .. Associated Type Defaultvalue |Description
I¥_FACTORY_CALENDAR Irmparti. Type WFCID SPACE Factory Calendar |d
I¥_TIME_UMIT Imparti .|] | [#] [Type MSEHT ‘DAY [Tirme Unit
I¥_START_DATE Imparti Type DATUM SY-DATUM Start Date
I¥_START_TIHE Imparti Type UZEIT SY-UZEIT Start Time
I¥_DURATION Irnpor Type SYINDEX) Duration
E¥_END_DATE Expoti.. 1 [Type DATUM End Date
EY_END_TIME Exporti... []|Type UZEIT End Time

LI L1[Type

The coding is a simple matter of calling the function module. No exceptions are raised in this example.
(How to deal with exceptions will be covered in a future whitepaper).

METHOD calculate_deadline

IF iv_factory_calendar IS NOT INITIAL.
CALL FUNCTION 'END_TIME_DETERMINE'

EXPORTING
duration = jv_duration
unit = jv_time_unit
factory_calendar = jv_Tfactory_calendar
IMPORTING
end_date = ev_end_date
end_time = ev_end_time
CHANGING
start_date = jv_start_date
start_time = jv_start_time
EXCEPTIONS

factory_calendar_not_found
date_out_of_calendar_range
date_not_valid =
unit_conversion_error
si_unit_missing
parameters_no_valid

1
DA WON =

Jocelyn Dart:
Last updated: 10 October 2004 Page 6 of 11

Workflow Utility Classes using ABAP OO w

OTHERS =7.
ELSE.
CALL FUNCTION 'END_TIME_DETERMINE'
EXPORTING
duration = jv_duration
unit = jv_time_unit
* FACTORY_CALENDAR = iv_factory_calendar
IMPORTING
end_date = ev_end_date
end_time = ev_end_time
CHANGING
start_date = jv_start_date
start_time = jv_start_time
EXCEPTIONS

factory_calendar_not_found =1
date_out_of_calendar_range =2
date_not_valid =3
unit_conversion_error =4
si_unit_missing =5
parameters_no_valid =6
OTHERS =7
ENDIF.

IF sy-subrc <> 0.
ev_end_date iv_start_date.
ev_end_time iv_start_time.
ENDIF.

ENDMETHOD.
Of course both the method and the class must be activated before they can be used.

As always, it's a good idea to test the class/method in transaction SE24 before including it in the workflow
standard task.

4 Using ABAP OO methods in workflow tasks

ABAP OO methods are included in workflow standard tasks in a very similar way to BOR methods. The
main differences are:

e The object category is “ABAP Class”

e The “dialog” and “synchronous” flags must be specified in the task (as they are not available at
the class/method).

New workflow standard tasks are created using transaction PFTC_INS by selecting the task type
I“Standard Task” and pressing the “Create” icon.

Task: Maintain

I

Task type Standard task i
Task
MName

When creating the class, specify the object category “ABAP Class” then select the ABAP Class and
method. Note: Only ABAP Classes that have implemented the interface IF_ WORKFLOW can be

Jocelyn Dart:
Last updated: 10 October 2004 Page 7 of 11

Workflow Utility Classes using ABAP OO w

selected. Additional parameters will be copied as usual when “Yes” is answered to the question “Transfer
missing elements from the object method?”.

Standard Task: Create

Standard task ZCALCDEADL
Mame SYSTEM ACTION: Calculate Deadlines
Package Appl. companent

w Description I Container 2) Triggeting events D) Terminating events Y, Default rules O SAPphone

Mame
Ahbr. ZCALCDEADL
Mame SYSTEM ACTION: Calculate Deadlines
‘Work item text SYSTEM ACTION: Calculate Deadline using Calendar
||I7Transfercontainerelements
Transfer missing elements from
Release status Released i

@ the object method?

Ohject method

Yes Mo " ® Cancel
Ohject Categary ABAR Class [
Ohject Type ZCL_WF_DEADLINE
Method CALCULATE_DEADLINE

Synchronous ohiect method

Specify that the method is to be run in Background by turning on the “Background Processing” flag. Note:
You must save the task before you can turn on the “Synchronous object method” flag.

Object Categary ABAP Class fed]
Ohject Type ZCL_WF_DEADLINE
Method CALCULATE_DEADLIME

Synchronous object method

Exgcution
Background processing] Executable with SAPTarms
[Iconfitrn end of processing

Container elements of the task, including attributes of the ABAP class, can be included in the work item
text and description by using the “Insert Expression” option as usual.

=
Standard task zoaLcoesoL M= Select Expression
Mame SYSTEM ACTION: Calculate Deal |Expression Description |
Fackage B] Systern Fields
= 3 Container
. . [4d Hoc Objects Ad Hoe Objects of Yorkflow Instan
w DESEETER & OmitEe] Anachmenis nuaunln:lljl of WWorkfow Instance = =7 BRIl
o Agent Actual Agent of Workflow Activity
Mame b @ Grouping Charact. Grouping Characteristic for Waorkfl
Abbr ZCALCDEADL I Step Instance
Mame SYETEM ACTION: Caleulate D) Factory Calendar
0 Unit of Measurement Unit of Measurement
Work ftem text SYSTEM ACTION: Calculate D = i CHRITED
O Start Time Start Time
O Duration Duration
0 End Date End Date
Release status Releasead i} o End Time End Time
b 3 ZCLWF_DEADLINE ZCL_WF_DEADLIME
Object method
Ohject Categaory ABAP Class]
Object Tvpe ZCL_WF_DEADLINE
Method CALCULATE_DEADLINE
Synchranous object metha
Tmm=

Jocelyn Dart:
Last updated: 10 October 2004 Page 8 of 11

Workflow Utility Classes using ABAP OO w

As always, it's a good idea to test the new task using transaction SWUS before including it in a workflow.

5 Calling the task from the workflow

Calling a standard task based on an ABAP OO class/method is no different to calling a standard task
based on BOR.

Workflows are created and maintained using transaction SWDD.
Use an activity step to call the new task.
The task can be found using the search dialog. Note: In 6.20 the Object Type and Method tab in the task

search dialog does not work.
Workflow Builder - Change '2ZCALCDEADL'

(O | &l | =]

[a]
Workflow IWSSHBUUUBE le =
Wersion 0000 {0000y Definition & Activity 000004 M
Status Mew, Saved m Outcomes Maotification Latest end Requested start Latest start Requeste M
ol l E:E Task G|
Mavigation area | Step name
& Steps |&| S5 Binding (Does Mot Existy |
i 000002 Undefined ;
2oEnt = search and Find: Tasks
Expression
Excluded Obj. type and method ‘Eu Task group
] Find
ZCALCH
Task Properties BISENE) i -
O Agenth @ Single-step tasks
& Beaa O Multistep tasks
Insertable Step Types | | & TaskCo
—_— i < confirm (|1 task(s) found
- -
Element |M M Task numbet Ohject Type Cat. |hethod Ohject abbr. | Ohject
DR S =||, TS599300101|ZCL_WF_DEADLIME [CL |CALCULATE_DEADLINE |ZCALCDEADL |SYSTE

Bindings can be generated automatically or entered manually as usual.

Jocelyn Dart:
Last updated: 10 October 2004 Page 9 of 11

Workflow Utility Classes using ABAP OO THE BEST-RUN BUSINESSES RUN SAP w

Workflow Builder - Change 'ZCALCDEADL'

(Ol | (&l | 2]

[Define Container Elements and Binding

Workflow [W539900088 -

[a—— 0000 (0000} De Eelected task may require additional container elements in:

Status New Saved the warkflow container and additional binding definitions brt | atest start Regueste J

' Check following proposal and confirm with 'Continue’

B EREI S
Mavigation area Cantainer: Warkflow {new elements)
= 2 Steps

T 000002 Undefined

K1 | I s

Tasks === Warkflow

expressian
lejected

E
Insertable Step Types L

e Y ination Again

u a

Element
=Double-Click to Create= B
=

pop _Adhoc_Ohjects

My WOk ows and Tasks | Task container | [worknow container | | more infa |[%]

Fieeiien ol t Termnlndne TERETTT

In the binding definition you can either provide workflow container elements or pass constants to fill the
import parameters with appropriate values. Note: The conversion of the field and the help depends on
the definition of the individual fields, e.g. to set the time unit to DAY the technical id TAG is entered.

Pu¥i1
Ster Bdt GoNTE Change Binding For Step /I_',
Wiarkflow Description | |5tep 'SYSTEMACTION: Cale_ | |Description \
Workflow B[~ < container = 2 Container
. n . ‘ I: I _Adhoc_Ohjects Ad Hoc Objects of Workflow Instan i _Adhoc_Ohjects pok Ad Hoco Objects of Workflow Ing
at 1] _Attach_Ohjects Attachments of YWorkflow Instance i _Aftach_Ohjects pob Aftachments of Warkflow: Insta
= O W Initiator Initiator of Workflow Instance 0O _Wi_Actual_Agent ok Actual Agent of Warkflow Activi (<]
Warkflow Kk o _WF_Priority Friority of Workflow Instance b & _wi_Group_ID pok Grouping Characteristic for W E
“fersion uli] I & _Wi_Group_ID Grouping Characteristic farWarki P & _Workitem por Step Instance
Status Act I _Workiterm Workflow Instance o I_FACTORY_CALEN (D) Factary Calendar leste OOE
O IV_FACTORY_CALET Factory Calendar E o IV_TIME_UNIT @Unlt of Measurement |Z|
|2 == |5 o IY_TIME_UNIT Unit of Measurement = o IY_START_DATE () Start Date =]
Navigation area | Il ERERIL AL TAMMMC R
S [D]E[=[@] [@]
noonog Binding Workflow -= Step 'SYSTEM ACTIOM: Calculate Deadlines'
Workilow 0= [[Step 'SYSTEM ACTION: Calculate Deadlires
2 b |=p|&W_DURATIONS
Al b |=p|&N_FACTORY_CALENDARE
H%DATUM% b |=p|& START DATEE
WUZEIT% p |=p|&NW_START_TIMES
ool EIY_TIME_UMITE b |=p|&n_TIME_UNITS
3E
Insertahble Step 7|
Element
=Double-Cli
pab _Adhoc_Obj -
G | P | TR
Binding Workflow =- Step 'SYSTEM ACTION: Calculate Deadlines'
bty Workflows an| =
okl ow = gi Step 'SYSTEM ACTIOM: Calculate Deadlines I
DA T ZEW_END_DATER <=| 4 |aEV_END_DATES
Warkflow Wizard &EV_END_TIMER | 4 |&EV_END_TIMER [2]
M Al Almse Af Thi A E

The values passed back to the workflow container can then be used in subsequent steps of the workflow
as usual.

Jocelyn Dart:
Last updated: 10 October 2004 Page 10 of 11

Workflow Utility Classes using ABAP OO

SADA

Workflow Builder - Change "ZCALCDEADL'

(O[] | &[] | =]

Workflow [WS99900088 V| %
“ersion 0000 (0000) Definition & User Decision 000008 ASK: Did it wark?
Status Mew Mot saved Decision Caontrol Outcomes Motification Requested start
bl =188 Refer.dateftime Expression e}
Mavigation area
¥ O Steps || Date 8EY END DATES End Date
000004 SYSTEM ACTION: Calculate Deadli Time SEY END TIMES e
+ Minute(s) |

I[4]l+]

Request Lk

Fossible Actions Upon Missed Deadline

6 Future Direction

Writing utility classes using the Business Object Repository has always been awkward. As ABAP OO is
easier to use for utility classes, by preference, ABAP OO should be used for utility classes instead of the

BOR.

7 Further information

Further information can be found in OSS using component id BC-BMT-WFM and in the SAP Library Help
under SAP Web Application Server -> Business Process Management.

Jocelyn Dart:
Last updated: 10 October 2004

Page 11 of 11

