<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type="text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
--></style><title>MIT Quantum Information Processing IAP
Lectures</title></head><body>
<div>The following MIT Independent Activities Period lectures should
be of interest to the readers of this list:</div>
<div><br></div>
<hr>
<div><font face="Times" size="+3" color="#000000"><b>Feedback Control
of NMR Spin Systems: A Control-Theoretic Perspective</b></font><font
face="Times" size="+2" color="#000000"><br>
<i>Claudio Altafini, SISSA-ISAS International School for Advanced
Studies</i><br>
</font><font face="Times" size="+1" color="#000000">Tue Jan 11, Wed
Jan 12, Tue Jan 18, Wed Jan 19, 10:30am-12:00pm, NW14-1112<br>
</font><font face="Times" size="+2" color="#000000"> <br>
</font><font face="Times" size="+1" color="#000000">No enrollment
limit, no advance sign up</font><font face="Times" size="+2"
color="#000000"><br>
</font><font face="Times" size="+1" color="#000000">Participants
requested to attend all sessions (non-series)</font><br>
<font face="Times" size="+2" color="#000000"></font></div>
<div><font face="Times" size="+2" color="#000000"> Assuming that
ensemble measurements can be performed in real time, the control of an
NMR spin system can be studied within the paradigm of classical
control theory. Adopting this perspective, these lectures will discuss
several aspects of the "state manipulation problem",
including controllability, model-based open loop control, real-time
state estimation (tomography) based on incomplete and/or noisy data,
and the synthesis of feedback mechanisms which can stabilize the
system within a desired state.</font><br>
<font face="Times" size="+2" color="#000000"></font></div>
<div><font face="Times" size="+2" color="#000000">Web:</font><font
face="Times" size="+2" color="#006699">
http://www.sissa.it/~altafini</font></div>
<div><br></div>
<hr>
<div><font face="Times" size="+3" color="#000000"><b>On the Duality
Between Quantum States and Quantum Maps</b></font></div>
<div><font face="Times" size="+2" color="#000000"><i>Karol Zyczkowski
Perimeter Institute - Waterloo, Ontario and Institute of
Physics</i></font></div>
<div><font face="Times" size="+1" color="#000000">Tue Jan 18, Wed Jan
19, 09-10:30am, NW14-1112<br>
</font><font face="Times" size="+2" color="#000000"> <br>
</font><font face="Times" size="+1" color="#000000">No enrollment
limit, no advance sign up</font><font face="Times" size="+2"
color="#000000"><br>
</font><font face="Times" size="+1" color="#000000">Participants
requested to attend all sessions (non-series)</font><font
face="Times" size="+2" color="#000000"><br>
<br>
These lectures will describe the theory of positive maps and its
applications to quantum entanglement, in particular: (1) Positive,
completely positive (CP), and completely co-positive (CcP) maps;<br>
(2) Characterization of a map by its dynamical (or Choi) matrix;<br>
(3) Dual cones and superpositive maps;<br>
(4) The Jamiolkowski isomorphism between CP-maps and density matrices
on an extended Hilbert space;<br>
(5) An analogous relation between classical maps and discrete
probability distributions;<br>
(6) Decomposable maps and the Stormer-Woronowicz theorem;<br>
(7) The positive partial transpose criterion for
separability;</font></div>
<div><font face="Times" size="+2" color="#000000">(8) Unistochastic
operations determined by unitary matrices of an extended
dimensionality.</font></div>
<div><font face="Times" size="+2" color="#000000"><br></font></div>
<hr>
<div><font face="Times" size="+2" color="#000000"><b>Sponsored by the
Cambridge-MIT Institute</b></font></div>
</body>
</html>