<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type="text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
 --></style><title>MIT Quantum Information Processing Special Seminar
Announc</title></head><body>
<div>This week's Theory of Computation seminar should be of interest
to subscribers to this list:</div>
<div><br></div>
<hr>
<div align="center"><font size="+2"><b>Quantum Encodings and
Applications to Communication Complexity and Locally Decodable
Codes</b></font></div>
<div align="center"><br></div>
<div align="center"><font size="+1"><i>by</i> Iordanis Kerenidis
(<i>Postdoctoral Associate, MIT Math Dept.</i>)</font></div>
<div align="center"><font size="+1">Tuesday, October 5, 2004 at 4:00
PM in Room 32-G449 (Kiva)</font></div>
<div align="center"><br></div>
<div align="center"><u>ABSTRACT</u></div>
<div><br></div>
<blockquote>Quantum computation and information has become a central
research area in theoretical computer science. It studies how
information is encoded in nature according to the laws of quantum
mechanics and what this means for its computational power. The ability
of a quantum system to be in a superposition of states enables us to
store an exponential amount of information in a quantum system.
However, this information is accessible only indirectly via
measurements. Our goal is precisely to investigate the fundamental
question of how information is encoded and processed in quantum
mechanical systems.</blockquote>
<blockquote><br></blockquote>
<blockquote>We investigate their power relative to classical encodings
in the model of one-way communication complexity and show that they
can be exponentially more efficient, answering a long-standing open
question in the area of quantum communication complexity. Furthermore,
we show how the theory developed for the study of quantum information
can be employed in order to answer questions about classical coding
theory and complexity by proving an exponential lower bound for
2-query Locally Decodable Codes. This is the first example where
quantum techniques are essential in resolving a purely classical
question.</blockquote>
<blockquote><br></blockquote>
<blockquote>No previous knowledge of quantum computing is
assumed.</blockquote>
<blockquote><br></blockquote>
</body>
</html>