<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <p>Hello,</p>
    <p>Apologies for the delayed reply.  I have addressed the status of
      this previously and I wouldn't say anything has substantially
      changed since then, so I have copied what I wrote then below.  In
      addition to what I wrote regarding the 12 degree determination,
      there is the additional uncertainty contribution from the
      multi-interaction luminosity determination to the extraction of
      the ratio, which is of the same order as the 12 degree uncertainty
      and would thus need to be similarly reduced to make any
      significant headway against the total uncertainty on the
      epsilon=0.98 point.  On that latter point, I would have to defer
      to Axel and the recent paper on that measurement:
<a class="moz-txt-link-freetext" href="http://www.sciencedirect.com/science/article/pii/S0168900217310288?via%3Dihub">http://www.sciencedirect.com/science/article/pii/S0168900217310288?via%3Dihub</a><br>
    </p>
    <p>For reference, my thesis is available at the following link and
      the relevant section is 5.2: <a class="moz-txt-link-freetext" href="https://arxiv.org/pdf/1705.04740.pdf">https://arxiv.org/pdf/1705.04740.pdf</a>.
      In general, I don't see any clear way to reduce the uncertainty
      significantly, certainly not by anything approaching an order of
      magnitude.  If there is sufficient interest and manpower for an
      analysis with the goal of reducing the uncertainty by ~20%, this
      might be feasible, but is not something I would be able to do
      beyond providing assistance in getting started.</p>
    <p>For the sake of completeness, it is possible that a careful
      analysis of the 4-fold ratio using negative field data from the
      February run could significantly reduce the uncertainty.  This,
      however, would be a serious undertaking, likely requiring at least
      one grad student working full time on it as a thesis project,
      given that many of the calibrations and analyses of the ToFs,
      magnetic field, tracking, 12 degree telescopes, etc. would need to
      be redone (or at least thoroughly checked for consistency with the
      fall run).  Even with that sort of manpower, there are
      uncertainties in the 4-fold analysis that may not cancel, however,
      and we have no means of measuring now.  In particular, I am not
      sure if we have sufficient data from the magnetic field
      measurements in negative current operation to constrain the
      systematic due to imperfect field reversal in the 12 degree region
      (where field gradients are the highest and are extremely sensitive
      to movements of the coils, asymmetries, etc.).<br>
    </p>
    <p>Brian<br>
    </p>
    <blockquote type="cite">
      <p>I will briefly comment on the 12 degree systematic
        determination, although I'll once again point you towards our
        theses for complete details on various aspects of the analyses. 
        In particular, Section 5.2 of my thesis covers the 12 degree
        analysis including a rather long discussion of systematic
        uncertainties in Section 5.2.8.  The dominant contributions to
        the 12 degree species-relative measurement systematic
        uncertainty were as follows:</p>
      <ol>
        <li>ToF trigger efficiency: 0.19%</li>
        <li>Magnetic field: 0.15%</li>
        <li>Knowledge of the elastic form factors: 0.14%</li>
        <li>Fiducial cuts: 0.12%</li>
        <li>Lepton tracking efficiency: 0.18%<br>
        </li>
        <li>Elastic selection: 0.27%</li>
      </ol>
      <p>These effects account for ~97% of the total uncertainty quoted
        for the 12 degree point.  The first three are related to the
        fact that we ran in only one field configuration.  For #1, the
        electrons and positrons tracked in the 12 degree arm sampled
        different distributions of ToF bars for the associated proton
        trigger (shown in Figure 5-19 of my thesis), including
        substantially different sampling of the rearmost ToF bars that
        had leading-edge discriminators and needed to be treated
        differently in the simulation than the rest of the bars (see
        Section 4.3.4 of Becky's thesis.  The magnetic field uncertainty
        arises from the fact that the 12 degree arms were mounted in the
        region of the field with the strongest field gradients (near the
        coil pinch) where our uncertainty in the field measurements and
        model were largest.  Due to the small acceptance of the
        telescopes and the strong slope in the cross section in this
        region, these field uncertainties can create a clearly visible
        effect (Figures 5-23 and 5-24 of my thesis).  The form factor
        systematic could, in principle, be reduced by future
        measurements, but is fundamentally limited by the fact that the
        telescopes sampled different average Q^2 for each species in the
        same field configuration.  Attempts were made to cross-check
        these systematics by using the limited amount of negative field
        data, however, there were insufficient negative field data in
        the fall run in which running conditions were at all similar to
        main production running (i.e., most negative field runs had
        material on the target windows, rolled-out detections, etc.) and
        the February running conditions were sufficiently different from
        the Fall run (in particular with regard to tracking the protons)
        to make any clear analysis effectively impossible.  Section
        5.2.1 of my thesis discusses the limitations of a single-arm
        measurement (i.e., requiring no information from a proton track
        (merely the trigger), which results in ~1%-level uncertainties).<br>
      </p>
      <p>The latter three effects are a result of the fact that the
        MWPCs were not initially designed to be the main (and, in fact,
        only) tracking elements of the 12 degree telescopes.  Although
        they performed extremely admirably and "saved-the-day" for the
        12 degree measurements, ultimately the limitation to three
        tracking planes and ~1-mm hit position resolution fundamentally
        limited the reconstruction.  As noted, Section 5.2.8 covers how
        these various effects contributed to the systematics and how
        they were tested by varying various elements of the analysis. 
        Section 5.2.2 of my thesis explains why the GEMs needed to be
        excluded from the 12 degree measurement.<br>
      </p>
      <p>Many of these effects are estimated very conservatively, and it
        is likely true that they are not completely orthogonal.  In
        particular, I suspect that the fiducial cuts and magnetic field
        uncertainties are highly-correlated since the field is related
        to the widths of the vertex distributions that go into the
        fiducial cuts.  Some of this is symptomatic of the fact that
        typically the more systematic uncertainties you investigate, the
        larger your uncertainty estimate becomes.  If Axel or Jan would
        like to comment on some of the forward main spectrometer point
        uncertainties, they might be able to illuminate a bit more, but
        in general the wider acceptance of the drift chambers washes-out
        some of these effects.</p>
      <p>Let me know if you have any questions.</p>
    </blockquote>
    <br>
    <div class="moz-cite-prefix">On 01/14/2018 06:21 AM, Belostotski,
      Stanislav wrote:<br>
    </div>
    <blockquote type="cite" cite="mid:5A5B3D57.4020000@desy.de">
      <pre wrap="">Dear Douglas, Michael   and all,
This is a good news.
The OLYMPUS results presented by me at the Annual session of the PNPI 
NICKI Council were actively discussed.It is important of course to 
measure the TPE contribution in a wide range of Q^2  and epsilon.
One more  motivation is to carefully measure the TPE at a  very small 
Q^2. The PNPI experiment to measure proton radius with a highest 
possible precision (using Recoil technique: TPC filled with hydrogen) is 
  in preparation phase  now at  the Mainz accelerator. The TPE 
correction, though expected to be small at small Q^2, will be the only 
one unknown value  which might affect the derivative at   Q^2-&gt;0. Most 
of other RCs are small in the case of the  Recoil technique.
In this conjunction, let me ask why the systematic error of the charge 
asymmetry measured with the two-arm telescope is so large? Might it be 
possible to revisit this analysis? What are the dominating factor, and 
isn.t it possible to reduce these systematic uncertainties.If yes, this 
would be a big help in solving the proton radius problem, at least by 
normalization of the theory at small Q^2.
With best regards stanB



On 13.01.2018 20:13, Douglas K Hasell wrote:
</pre>
      <blockquote type="cite">
        <pre wrap="">Dear Colleagues,

        This is just to let you know that the Physics Today article on OLYMPUS written by Steve Blau is being republished in Japan in the March, 2018 issue of Parity.

                                                      Cheers,
                                                              Douglas

26-415 M.I.T.                                  Tel: +1 (617) 258-7199
77 Massachusetts Avenue                        Fax: +1 (617) 258-5440
Cambridge, MA 02139, USA                       E-mail: <a class="moz-txt-link-abbreviated" href="mailto:hasell@mit.edu">hasell@mit.edu</a>


-------------- next part --------------
A non-text attachment was scrubbed...
Name: smime.p7s
Type: application/pkcs7-signature
Size: 1843 bytes
Desc: not available
Url : <a class="moz-txt-link-freetext" href="http://mailman.mit.edu/pipermail/olympus/attachments/20180113/c9bf4736/attachment.bin">http://mailman.mit.edu/pipermail/olympus/attachments/20180113/c9bf4736/attachment.bin</a>
_______________________________________________
Olympus mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Olympus@mit.edu">Olympus@mit.edu</a>
<a class="moz-txt-link-freetext" href="http://mailman.mit.edu/mailman/listinfo/olympus">http://mailman.mit.edu/mailman/listinfo/olympus</a>

</pre>
      </blockquote>
      <pre wrap="">_______________________________________________
Olympus mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Olympus@mit.edu">Olympus@mit.edu</a>
<a class="moz-txt-link-freetext" href="http://mailman.mit.edu/mailman/listinfo/olympus">http://mailman.mit.edu/mailman/listinfo/olympus</a>
</pre>
    </blockquote>
    <br>
  </body>
</html>