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Over the past two decades, a discrepancy has emerged between two different techniques for mea-
suring the proton’s electromagnetic form factors. Unpolarized electron-proton cross section mea-
surements paint a picture of the proton’s internal structure that is incompatible with measurements
from polarization transfer experiments. The leading hypothesis is that the discrepancy is caused
by a typically neglected radiative correction, hard two-photon exchange (TPE), which would af-
fect the two measurement techniques in different ways. There is no model independent way to
calculate hard TPE, but it can be measured experimentally by looking for an asymmetry between
the positron-proton and electron-proton elastic cross sections. Three recent experiments have at-
tempted to quantify this asymmetry, and, just last month, the third of these, called OLYMPUS,
released its results [1]. The OLYMPUS experiment collected data in 2012 at DESY, alternating
between 2 GeV electron and positron beams, directed through a hydrogen gas target. The scat-
tered lepton and recoiling proton were detected in coincidence with a large acceptance toroidal
spectrometer. The relative luminosity between the two beam species was monitored with three
independent systems, and the results comprise 3 inverse fb of integrated luminosity, exceeding
by a factor of three the other two TPE experiments combined. In this talk, the case for the TPE
hypothesis will be presented, the OLYMPUS experiment will be described, and the results of all
three experiments will be compared.
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1. Introduction
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Figure 1: Measurements of the proton’s form factor ratio u,Gg /Gy extracted from polarization asymme-
tries [2-7] do not agree with those from unpolarized Rosenbluth separation [8—13].

Over the past few decades, a discrepancy emerged between two different techniques for mea-
suring the proton’s elastic electromagnetic form factors. These form factors, Gg(Q?) and Gy (Q?),
describe the proton’s distributions of charge and current respectively as functions of the momen-
tum transfer scale Q2. Since the 1950s, the proton’s form factors were extracted from unpolarized
electron-scattering cross sections using Rosenbluth Separation [14]. The advent of high-quality
polarized electron beams made it possible to extract the ratio Gg /Gy from double spin asymme-
tries. The two techniques have produced discrepant results, as can be seen in the representative
sample of world data shown in figure 1. Until this discrepancy is understood, it is difficult to have
complete confidence in our understanding of the proton’s electromagnetic structure.

The leading hypothesis for the cause of the discrepancy is hard two-photon exchange hard
TPE, which can be measured by taking the ratio of positron-proton to electron-proton elastic scat-
tering cross sections. Three recent experiments have measured this ratio to test the TPE hypothesis,
and with the recent release of the OLYMPUS results [1], all three have published their findings.
The results are not strongly conclusive. OLYMPUS measured the ratio to be smaller than many
predictions, but the results are still consistent with hard TPE being the cause of the discrepancy.

2. Why measure 6, /0, ,?

The leading hypothesis for the cause of the proton form factor discrepancy is that there is
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a non-negligible contribution from hard two-photon exchange (TPE), a radiative correction that
is neglected in standard radiative correction prescriptions [15, 16]. If hard TPE were properly
accounted for, it is possible that the polarization asymmetry and Rosenbluth separation measure-
ments would actually be consistent with each other. Unfortunately, there is no model independent
method for calculating hard TPE, though there are numerous model-dependent approaches, such
as using hadronic intermediate states [17—19], dispersion relations [20-22], generalized parton dis-
tributions [23], and phenomenological fits [24-26]. Many predictions suggest that the inclusion of
hard TPE would resolve the form factor discrepancy, while some disagree [27,28].

Though there is no model independent calculation of hard TPE, it can be determined experi-
mentally through a measurement of R;y, the cross section ratio of elastic positron-proton scattering
to elastic electron-proton scattering (after standard radiative effects have been accounted for):

O,
Ry = Detpoetp 2.1

O p—e p
At leading order, this ratio is equal to unity. The next to leading order term is an interference
between one- and two-photon exchange. This interference term changes sign when switching be-
tween electron and positron scattering, so that R,y can be written:

ARe[. 45,1y

W +0(a*). (2.2)

Deviations in R,y from unity indicate a contribution from hard TPE.

In addition to its magnitude, the kinematic dependence of Ry is also relevant. For TPE to
help resolve the discrepancy, R, should increase as €, the virtual photon polarization parameter,
decreases and as momentum transfer Q2 increases.

3. Experiments

Three recent experiments endeavored to measure R;y. In addition to OLYMPUS, an experi-
ment at the VEPP-3 storage ring in Novosibirsk, Russia, collected data in 2009 and 2012, and an
experiment using the CLAS spectrometer in Hall B at Jefferson Lab, USA, collected data in 2011.
Summaries of these experiments are presented below.

3.1 The OLYMPUS Experiment

The OLYMPUS experiment [29] was conducted in 2012 at the DORIS storage ring at DESY,
Hamburg, Germany. DORIS was modified so as to facilitate the acceleration and storage of elec-
trons or positrons within the ring. During data collection, the beam species was alternated approx-
imately once per day.

The DORIS beam was directed through a windowless hydrogen gas target that was internal
to the ring vacuum [30]. A differential pumping system of six turbomolecular vacuum pumps was
necessary to continuously remove the hydrogen gas that flowed from the ends of the target and
prevent it from spoiling the ring vacuum.

The target was surrounded by a large-acceptance toroidal magnetic spectrometer. An illustra-
tion of the spectrometer is shown in figure 2. The spectrometer was previously used in the BLAST
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Figure 2: The OLYMPUS spectrometer was formerly used in the BLAST experiment.

experiment [31], which ran from 2001-2005 at MIT-Bates. The spectrometer had two instrumented
sectors, one to the left and the other to the right of the target chamber. Layers of drift chambers were
used for tracking charged particles, and walls of scintillator were used for time-of-flight measure-
ments and triggering. Elastic ep events were identified by a coincidence detection of the scattered
lepton in one sector and the recoiling proton in the other.

In order to extract Ryy, it was crucial to determine the relative luminosity between the electron
and positron data sets. For this purpose, three independent luminosity monitoring systems were
employed. By recording the instantaneous beam current as well as the target flow, the slow control
system could reconstruct the relative luminosity to within a few percent. A pair of tracking tele-
scopes were deployed at forward angles to monitor the rate of elastic ep scattering in kinematics
where TPE effects were thought to be small. A pair of calorimeters were positioned next to the
downstream beamline to measure the rate of symmetric Mgller and Bhabha scattering [32].

3.2 Experiment at VEPP-3

The experiment at VEPP-3 was similar to OLYMPUS in that it used alternating stored beams
of electrons and positrons [33]. However, elastic ep events were detected in a non-magnetic de-
tector. This came with the advantage of having identical acceptances for detecting electrons and
positrons. However, without a magnetic field, no momentum analysis of the detected particles was
possible. The rejection of inelastic background relied on energy deposition measurements in Csl,
Nal, and scintillator detectors.

The relative luminosity between electron and positron modes was also a concern for the VEPP-
3 experiment. The luminosity was normalized to the forward elastic scattering point, at kinematics
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where TPE effects are expected to be small. Thus, the VEPP-3 measurement of R, is relative to
Ry at their luminosity normalization point (LNP).

3.3 CLAS Two-Photon Experiment

The CLAS Two-Photon Experiment [34—36] used a teritiary beam of electron/positron pairs.
The Hall B secondary photon beam was directed on gold converter foil to create electron and
positron pairs, which in turn were directed through a magnetic chicane so that the unconverted
photons to be blocked. By combining measurements taken in both chicane polarities, the luminos-
ity of electron and positron data sets could be guaranteed to be equal. However, given the tertiary
beam, the initial pre-scatter energy of the lepton in each event was unknown and had to be re-
constructed. Scattered leptons and recoiling protons were detected in the CLAS spectrometer, a
toroidal magnetic spectrometer with nearly 47 coverage.

4. Results
N \ \ T
1.05 P~ Main spectrometer Fe— —
NN 12° telescopes +=—
1.04 . Correlated uncertainty .
P BBllunc(jjen l/\\ll only ---
unden N+ A —— _|
1.03 Tomalak
1.02 Bernauer ------
Roy 1.01 T
1 e $TE |
0.99 [ ﬁ Iﬂ? """""
0.98 - —
0.97 \ \ \ \ \ \ ]
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

\ \ \ \ \ |
2.0 1.0 05 0.0

1.5
Q@ [(GeV/c)?]

Figure 3: OLYMPUS measured Ryy to be somewhat lower than theoretical calculations by Blunden et
al. [22], and Tomalak et al. [21], and the phenomenological prediction by Bernauer et al. [26].

The results of the OLYMPUS experiment [1] are shown in figure 3, along with three predic-
tions for Ry,. The inner error bars show the statistical uncertainty, while the outer error bars show
the statistical and uncorrelated systematic uncertainties added in quadrature. The grey band below
the data shows the 1o correlated uncertainty, though the correlations are more complicated than
a simple scale factor, and will be described in a future article. The predictions from Blunden et
al. use a dispersive approach to calculate the TPE diagrams with hadronic propagators; the N-only
prediction assumes only a nucleon propagator only, while NV 4 A assumes the coherent sum of nu-
cleon and A propagators [22]. The calculation of Tomalak et al. uses subtracted dispersion relations
to evalulate the TPE diagrams [21]. The curve shown corresponds to a subtraction point of € =0.5.
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The phenomenological prediction of Bernauer et al. comes from fits to world form factor data with
an assumed functional form for the TPE contribution [26].

OLYMPUS measures Ry to be somewhat smaller than predicted. The OLYMPUS data are for
the most part consistent with unity over much the OLYMPUS acceptance, and in fact fall below
unity at low Q? and high &, which is a prediction of Bernauer (and to a lesser extent, Tomalak).
The slope of the data points is better matched by the Blunden calculations.
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Figure 4: The results of the three recent TPE experiments are difficult to compare to one another because
they are situated at different positions on the two-dimensional £, Q> kinematic plane.

It is not straight-forward to compare the results of the three TPE experiments, because the
kinematics of elastic scattering are two-dimensional. Figure 4 shows the kinematics for the data
points of all three experiments in the €, Q” plane. There is no reason that data points at similar
values of € be consisten with each other, if they fall at very different values of Q%. To permit a
comparison, I show, in figure 5 the data in three bands of very similar Q°, which are illustrated
by gray bars in figure 4. In all three Q° regions, there are no inconsistencies between the three
experiments.

5. Conclusions

The results from OLYMPUS neither favor the null hypothesis (no hard TPE) because they
show a slope in Ryy, nor do they strongly confirm the TPE hypothesis. OLYMPUS measured Ryy
to be smaller than most theoretical predictions. This raises the possibility that there may be some
unconsidered effects which must be added to the present theory calculations.

The important question that must be asked of the TPE results is whether or not the measured
Ryy resolves the form factor discrepancy. In an attempt to answer that question, I developed a
phenomenological scheme for estimating the necessary R,y from global fits to polarized and un-
polarized measurements of the proton’s form factors (details are described in appendix D of [37].
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Figure 5: OLYMPUS measured Ry to be somewhat lower than theoretical calculations by Blunden et
al. [22], and Tomalak et al. [21], and the phenomenological prediction by Bernauer et al. [26].
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Figure 6: The amount of TPE needed to resolve the form factor discrepancy is not precisely determined, as
seen by the uncertainty band from the phenomenological prediction of the author.

Global fits that are published with uncertainties allow an estimate of the uncertainty in the phe-
nomenological prediction. Figure 6 shows the results for OLYMPUS kinematics. The input global
fits for unpolarized data are taken from [26], while for the polarized data, the parameterization
1,Ge/Gy = 1 —0.120%/GeV? was used. The uncertainty band is derived from the quoted un-
certainties in [26]. As can be seen from the figure, the OLYMPUS measurement was made in
kinematics in which little hard TPE is needed to resolve the discrepancy. Furthermore, the size of
the needed TPE effect is not well constrained, especially for Q> > 1 GeV?>. At these larger values of
Q?, the OLYMPUS data are fully consistent with the phenomenological prediction, which implies
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that the TPE hypothesis is still completely valid.

For a more definitive test to rule out confirm the TPE hypothesis, a higher beam energy (and

thus greater momentum transfer) is needed. At these kinematics, the form factor discrepancy is
larger, and so the size of the needed TPE effect is greater, making it easier to distinguish between
the hypotheses.
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