UPDATE ON THE OLYMPUS TWO-PHOTON EXCHANGE EXPERIMENT

N. Akopov

(Yerevan Physics Institute/DESY, akopov@mail.yerphi.am)

For the **OLYMPUS** Collaboration

PANIC-2014, Hamburg

N. Akopov (YerPhi/DESY)

CONTENT

- Motivations
- Other experiments
- OLYMPUS Experiment
- Analysis status
- Conclusions

FORM FACTORS TO DESCRIBE ELASTIC EN SCATTERING

- Four fundamental observables $G_{E(p,n)}$ and $G_{M(p,n)}$ reflecting electric and magnetic charge distribution in nucleon
- Described by quark structure of nucleon
- ♦ Calculable in lattice QCD (at least at $0.5 < Q^2 < 4 \text{ GeV}^2$)
- Until recently FFs were experimentally determined with unpolarized cross section measurements using Rosenbluth separation method
- ✤ In the last 15 years thanks to polarization technique (Jlab), a distinctly different Q² dependence in the FF ratio is observed contradicting the Rosenbluth based relation : $\mu G_{Ep} \sim G_{Mp}$

MOTIVATION FOR OLYMPUS EXPERIMENT

• Proton Form Factors Ratio

All Rosenbluth data in agreement Dramatic discrepancy between Rosenbluth and recoil polarization technique (Jefferson Lab data >800 citations)

Interpreted as evidence for TPE in ep elastic scattering

Form factors: Rosenbluth method

Extract G_E and G_M as a slope and intercept respectively At high Q^2 contributions from G_M dominates over G_E

N. Akopov (YerPhi/DESY)

•

FORM FACTORS: POLARIZATION TRANSFER (RIGHT) AND BEAM-TARGET ASYMMETRY (LEFT)

N. Akopov (YerPhi/DESY)

FORM FACTORS RATIO: PUZZLE

Arrington et al. Phys. Rev. C76 (2007) 035205

ngton et al. 1 nys. Nev. 070 (2

Puzzle:

Huge discrepancy increasing with Q^2

Both methods assume OPE Rosenbluth has large stat. and syst. uncertainties TPE can explain puzzle !

N. Akopov (YerPhi/DESY)

TWO PHOTON EXCHANGE (TPE) CONTRIBUTION

$$\frac{\sigma}{e^+ p}_{e^- p} = \frac{\left[\left| M_{Born} \right|^2 + 2e^2 M_{Born} \operatorname{Re}(M_{2\gamma}^*) + \dots \right]}{\left[\left| M_{Born} \right|^2 - 2e^2 M_{Born} \operatorname{Re}(M_{2\gamma}^*) - \dots \right]}$$

Model dependent

P.G. Blunden et al., Phys. Rev. C72 (2005) 034612

TPE CORRECTED ROSENBLUTH DATA

TPE can explain form factors ratio discrepancy: J Arrington, W. Melnitchouk, J.A. Tjon, Phys. Rev. C 76 (2007) 035205

PREVIOUS TPE WORLD DATA AND PROJECTED OLYMPUS RESULTS

- TPE contribution measured in early 1960s
 —> small effect
- Due to big errors —> no conclusion
 → not resolved discrepancy

Expected sensitivity

EXISTING E⁺ / E⁻ EXPERIMENTS

	VEPP-3	OLYMPUS	EG5 CLAS
	Novosibirsk	DESY	JLab
beam energy	3 fixed	1 fixed	wide spectrum
equality of e $^\pm$ beam energy	measured	measured	reconstructed
e^+/e^- swapping frequency	half-hour	24 hours	simultaneously
e^+/e^- lumi monitor	elastic low-Q ²	elastic low-Q ² , Möller/Bhabha	from simulation
energy of scattered e $^\pm$	EM-calorimeter	mag. analysis	mag. analysis
proton PID	$\Delta E/E$, TOF	mag. analysis, TOF	mag. analysis, TOF
e^+/e^- detector acceptance	identical	big difference	big difference
luminosity	$1.0 imes10^{32}$	$2.0 imes10^{33}$	$2.5 imes10^{32}$
beam type	storage ring	storage ring	secondary beam
target type	internal H target	internal H target	liquid H target
data taken	2009, 2011-12	2012	2011

EXISTING E⁺ / E⁻ EXPERIMENTS

 \checkmark VEPP-3 (Novosibirsk): E_{beam} = 1.6, 1 and 0.6 GeV E_{beam} = 0.5 – 4 GeV ✓ CLAS (Jlab): ✓OLYMPUS (DESY): $E_{beam} = 2 \text{ GeV}$ Kinematic coverage CLAS-2011 area 2.5 OLYMPUS-2012 2 VEPP-3, 1 Q², GeV² 1.5 VEPP-3, II VEPP-3, III 0.5 0ò 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.9 0.8 ε

N. Akopov (YerPhi/DESY)

VEPP-3 AND CLAS TPE PRELIMINARY RESULTS

Good agreement between VEPP-3 and CLAS for preliminary results

WHY DORIS?

- DORIS provides unique conditions:
- High e+/e- beam current ~100mA
- Fast switching between e+/e- on timescale of ~30 minutes
- Top-up injection mode
- Beam energy of 2 GeV measured with high < 0.5% precision

DATA TAKING IN 2012

Limited flow and luminosity in Feb. run

Fall run

- > Full hydrogen flow
- > DORIS top-up mode
- Excellent performance
- Exceeded integrated luminosity:
 - Design 3.6fb⁻¹, achieved 4.45fb⁻¹
- Daily switch of beam species, good balance
- Mainly positive toroid polarity due to background
- Negative field for systematics checks

DETECTOR OVERVIEW: R. MILNER ET AL, "THE OLYMPUS EXPERIMENT", NUCL. INSTR. METH. A 741 (2014) 1-17.

Modified (upgraded) Bates Large Acceptance Spectrometer Toroid - BLAST (MIT) detector

TARGET SYSTEM: J.C. BERNAUER ET AL., "THE OLYMPUS INTERNAL HYDROGEN TARGET" NUCL. INSTR. METH. A 755 (2014) 20-27.

- Internal, windowless gas target
- ➢ 60 cm long storage cell
- Elliptical cross section (27× 9) mm²
- ≻100 µm thick aluminum wall
- ➢ O (10¹⁵) atoms/cm²
- Cryo cooled ~ 45 K
- Hydrogen produced by generator (electrolysis)INFN Ferrara, MIT

TOROIDAL MAGNET

- > 8 air coils from BLAST
- > Operating at reduced field
- Positive and negative polarity
- Maximum field 0.28 T

DRIFT CHAMBERS

- > Two chambers, trapezoidal shape
- > Jet-style drift cells
- > 5000 wires each
- > Tracks with 18 hits
- > 10° stereo angle

TIME-OF-FLIGHT COUNTERS

- Scintillation counters from BLAST
- > Trigger
 - Top/bottom coincidence
 - Kinematic constraint
 - + 2nd level wire chamber
- > Time-of-flight for particle ID

LUMINOSITY MONITORS

- Slow Control
- Beam current and target density
- 15 -20 % absolute, <5% relative uncertainty</p>
- Tracking telescopes at 12°
- Elastic ep scattering at low angles
- Two independent tracking system: MWPCs and GEMs
- Mőller/Bhabha monitor at 1.3°
- High statistics measurement, no dead time

Need e⁺ e⁻ luminosity ratio, not precise absolute luminosity

Details in talk by D. Khaneft

ANALYSIS FRAMEWORK

ROOT based C⁺⁺ ("cooker")

With plug-ins and recipes to work equivalently with Data and MC

RECENT PROGRESS WITH TOF

Calibration quite advanced

Improved calibration with tracking extended to ToF detectors Developed cosmic ray MC generator for better understanding and use of cosmic data for calibration

Energy loss vs. hit time

N. Akopov (YerPhi/DESY)

TOF AND WC BASED PID

Particle **ID** based on calculated mass (M) using WC momentum (P), ToF track path (L) and hit time (T): $M^2 = P^2[(cT/L)^2 - 1]$

RADIATIVE CORRECTIONS OF α^3 **ORDER**

•All standard RC's are implemented in MC framework to extract hard TPE effect

Consistency between different experiments (VEPP-3, Jlab, Olympus)

N. Akopov (YerPhi/DESY)

MIT RADIATIVE GENERATOR

Agreement with Maximon&Tjon at low ΔE (soft photons)

Nice agreement with VEPP-3 generator

Numerical calculations of bremsstrahlung matrix element

Due to initial state radiation lowering effective incident beam energy \rightarrow rise in cross section

MIT RADIATIVE GENERATOR

epton scattering angle

N. Akopov (YerPhi/DESY)

STATUS OF ANALYSIS: DATA SELECTION

N. Akopov (YerPhi/DESY)

STATUS OF ANALYSIS: DATA SELECTION

N. Akopov (YerPhi/DESY)

STATUS OF ANALYSIS: YIELD (VERY PRELIMINARY)

~2% of total collected statistics

Nice MC-Data agreement

N. Akopov (YerPhi/DESY)

CONCLUSIONS/OUTLOOK

- Importance of TPE study to solve FFs ratio puzzle
- Two other experiments at Novosibirsk and Jlab
- ➢ Based on former BLAST detector moved from MIT/Bates to DORIS (DESY) upgraded and reassembled → very successful data taking in 2012
- Data analysis in progress
- Large efforts to solve the problems with RCs, as well to understand systematic uncertainties to achieve e+/e- ratio measurement at 1% level
- Preliminary results expected at the end of this year