Two-Photon Exchange in Electron Proton Scattering -Status of OLYMPUS Experiment at DESY

HSQCD 2014 Gatchina

Uwe Schneekloth, DESY for the OLYMPUS Collaboration

Outline

- Introduction and Motivation
- > Overview of the Experiment
- Schedule
- Data Taking Periods
- > Performance
- Status of Analysis
- Radiation Corrections
- > Conclusions

Elastic e N Scattering/Form Factors

Nucleon elastic form factors: electric G_E and magnetic G_M

- Fundamental observables describing distribution of charge and magnetism in proton and neutron
- Described by quark structure of proton
- Will be calculable in lattice QCD
- For ~ 50 years unpolarized cross section measurements have determined G^p_E and G^p_M using the Rosenbluth separation

$$\frac{d\sigma/d\Omega}{(d\sigma/d\Omega)_{Mott}} = \frac{\sigma}{\sigma_0} = A(Q^2) + B(Q^2)\tan^2\frac{\theta}{2} \qquad \sigma_{red} = \frac{d\sigma}{d\Omega}\frac{\varepsilon(1+\tau)}{\sigma_{Mott}} = \tau G_M^2 + \varepsilon G_E^2$$
$$= \frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1+\tau} + 2\tau G_M^2(Q^2)\tan^2\frac{\theta}{2} \qquad \tau = Q^2/4M_p^2 \qquad \varepsilon = \left[1 + 2(1+\tau)\tan^2\theta/2\right]^{-1}$$

(ɛ transverse virtual photon polarization)

Form Factors Rosenbluth Method

Reduced cross section $\sigma_{red} = \epsilon G_{E}^{2} + \tau G_{M}^{2}$

 \rightarrow Determine $|\mathbf{G}_{\mathsf{E}}|, |\mathbf{G}_{\mathsf{M}}|, |\mathbf{G}_{\mathsf{E}}/\mathbf{G}_{\mathsf{M}}|$

DESY

Motivation of OLYMPUS Experiment

Proton Form Factor Ratio

- > All Rosenbluth data in agreement
- Dramatic discrepancy between Rosenbluth and recoil polarization technique
 - Jefferson Lab data (>800 citations) polarized beam and target
- Interpreted as evidence for two photon contribution to elastic scattering

Motivation of OLYMPUS Experiment

Two-Photon-Exchange

- Large theoretical model uncertainties
- Only experiment can definitively resolve the contributions beyond single photon exchange
- Determine TPE by measuring ratio of e⁺p/e⁻p, i.e. ratio of rates, no absolute cross section measurements

$$\sigma(e^{-}p) = |M_{1\gamma}|^{2} \alpha^{2} - 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^{3}$$

$$\sigma(e^{+}p) = |M_{1\gamma}|^{2} \alpha^{2} + 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^{3}$$

$$R = \frac{\sigma(e^{+}p)}{\sigma(e^{-}p)} = 1 + \frac{4 \Re(M_{1\gamma}^{\dagger}M_{2\gamma})}{|M_{1\gamma}|^{2}}$$

OLYMPUS Experiment at DORIS

Elastic e⁺(e⁻) p scattering at 2 GeV beam energy

- Measure ratio of e⁺p/e⁻p rates with 1% precision
- DORIS 100mA e⁺(e⁻) beam
- Unpolarized internal hydrogen target, density 3 x 10¹⁵ at/cm²
- Daily change of beam (e⁺ or e⁻) to minimize systematic error
- Redundant measurement of luminosity
- > Using former BLAST detector from MIT/ Bates. Ideally suited.

Comparison data and theory

expected sensitivity

Schedule and Progress

- > 2010: Blast detector shipped from MIT to DESY, assembled in parking position
- > 2011
 - February: Interaction region modified, test experiment
 - Summer: Detector moved in to beam position
- > 2012 data taking
 - February: first data taking period
 - Fall: second data taking period 22.10.2012 2.01.2013
 - Exceeded integrated luminosity: design 3.6fb⁻¹, achieved 4.45fb⁻¹
- > 2013
 - Cosmic ray run
 - Complete survey
 - New magnetic field map
 - Beam position monitor calibration
 - Reconstruction/data analysis
- > 2014: Reconstruction/data analysis

Detector Overview

Target System

- Internal, windowless gas target
- > 60 cm long storage cell
- Elliptical cross section (27 mm x 9 mm)
- > 100 µm thick aluminum wall
- H₂ flows up to 1 sccm
- > Cryo cooled ~45 K
- > O(10¹⁵) atoms/cm²
- > Hydrogen produced by generator (electrolysis)

INFN Ferrara, **MIT**

Toroidal Magnet

- > 8 air coils from BLAST
- > Operating at reduced field
- Positive and negative polarity
- Maximum field 0.28 T

Drift Chambers

- > Two chambers, trapezoidal shape
- > Jet-style drift cells
- > 5000 wires each
- Tracks with 18 hits
- > 10[°] stereo angle

Uwe Schneekloth | OLYMPUS Experiment, HSQCD | July 2014 | Page 12

Time-of-Flight Counters

- Scintillation counters from BLAST
- > Trigger
 - Top/bottom coincidence
 - Kinematic constraint
 - + 2nd level wire chamber
- Time-of-flight for particle ID

Luminosity Determination

Three independent measurements

Slow Control

- Beam current and target density
- 15 20% absolute uncertainty, relative <5%</p>
- Tracking telescopes at 12°
 - Elastic ep scattering at low angles
 - Two independent sectors with independent tracking systems: MWPCs and GEMs
 - Use combined information or separately for cross checks
- Møller/Bhabha monitor at 1.3°
 - High statistics measurement, no dead time

Need e⁺ e⁻ luminosity ratio, not precise absolute luminosity

Details talk by D.Veretennikov

Detector before Roll-in July 2011

Uwe Schneekloth | OLYMPUS Experiment, HSQCD | July 2014 | Page 15

DataTaking in 2012

Limited flow and luminosity in Feb. run

Fall run

- Full hydrogen flow
- DORIS top-up mode
- Excellent performance
- Exceeded integrated luminosity:
 - Design 3.6fb⁻¹, achieved 4.45fb⁻¹
- Daily switch of beam species, good balance
- Mainly positive toroid polarity due to background
 - Negative field for systematics checks

Elastic ep Event

Time-of-Flight – Particle Identification

Particle id based on calculated mass using WC momentum and TOF

12° Telescope Distributions

Møller/Bhabha Luminosity Monitor

- Independent luminosity measurement at 1.3°
- In addition, can detect lepton from e p scattering
- Cross check energy calibration and rate estimate
- Rates are corrected for beam positions and slopes

Møller/Bhabha Cross Sections

Acceptance integrated cross sectiodelete slide from talk?

Realist acceptance integrated MC cross sections needed Run-by-run fluctuations being implemented

Radiative Corrections

Independent elastic ep generators written at MIT (weighted) and DESY(unweighted)

- Radiative corrections include:
 - Initial and finale state beamsstrahlung for lepton and proton, vertex corrections, vacuum polarization and soft two photo exchange
 - Hard two photon exchange not included
- MIT generator thoroughly tested and compared with Novosibirsk code
- > Validation of DESY generator in progress. Will compare both.

Møller/Bhabha generator with radiative corrections well advanced

Radiative Corrections

Generator does numerical calculation of bremsstrahlung matrix element

Line: integrated function Points: generated MC events

Data Analysis - Data selection

Several independent analysis of data in progress

Data Analysis - Data selection

Right vs. left theta angle after vertex cuts

After theta and momentum cuts

Data Analysis – Yield Plots

Q² distributions

preliminary

BLINDED

Simulation

Data

2.5

3

2

Background not subtracted Background study in progress

Data are blinded, prevent

- bias in analysis >
- accidental release of premature results

1.5

 Q^2 [GeV²]

Conclusions

- Study of two photon exchange important for understanding proton form factor ratio disagreement
 - Two other experiments at Novosibirsk and JLab
- Former BLAST detector moved from MIT/Bates to DORIS accelerator at DESY and reassembled
- Very successful data taking in 2012
- Data reconstruction and analysis now in progress
- Large effort to understand systematic uncertainties to achieve ratio measurement at 1% level
- Preliminary results available end of this year

OLYMPUS Collaboration

Institutes

- > Arizona State University, USA
- > DESY
- Hampton University, USA
- INFN, Bari, Italy
- INFN, Ferrara, Italy
- INFN, Rome, Italy
- > MIT, USA
- Petersburg Nucl. Phys. Inst.
- > Universität Bonn, Germany
- > University of Glasgow
- > Universität Mainz, Germany
- > Univ. of New Hampshire, USA
- > Yerevan Physics Inst., Armenia

45 physicists

