OLYMPUS – Determining the Two-Photon Contribution to Elastic ep Scattering

Jürgen Diefenbach on behalf of the OLYMPUS collaboration

Johannes-Gutenberg-Universität Mainz

17. März 2014 – DPG-Frühjahrstagung, Frankfurt, HK 481

OLYMPUS – Setup and First Data Taking

3 Data Analysis

The Proton Electromagnetic Form Factors

The *proton*...

- carries electric charge
- 2 has a sub-structure (resonances, μ_p , ...)

How is charge (and magnetization) distributed inside the proton?

Use elastic electron proton scattering

The Proton Electromagnetic Form Factors

Elastic electron proton scattering:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\mathsf{Mott}} \frac{1}{1+\tau} \left(\mathbf{G}_{\mathbf{M}}^{2} + \frac{\epsilon}{\tau}\mathbf{G}_{\mathbf{E}}^{2}\right)$$

- au, ϵ kinematic variables
- $G_E(Q^2)$ electric form factor
- $G_M(Q^2)$ magnetic form factor

The Proton Electromagnetic Form Factors

First measurements: in 1950s (Hofstadter, SLAC)

Separation of electric and magnetic FF:

- ullet measurements at same Q^2 , different $\epsilon,\, au$
- different linear combinations of G_E^2 , G_M^2
- separation of G_E^2 , G_M^2 for one value of Q^2

Rosenbluth separation: >50 years of form factor measurements

Form Factor Ratio

Electric and magnetic FF seem to have same shape: (normalized) ratio consistent with 1

Form Factor Ratio

Cross section is dominated by G_M^2 for high Q^2

Large uncertainty of ratio for high Q^2

$$\frac{1}{1+\tau} \left(G_M^2 + \frac{\epsilon}{\tau} G_E^2 \right)$$

 G_{E}^{2} supressed by $1/ au \sim 1/Q^{2}$

Polarization Transfer I

New technique used at Jefferson Lab in the 1990s:

- scattering of polarized electrons off unpolarized protons
- measure polarization of recoil protons
- ullet transverse vs. longitudinal component \sim FF ratio:

$$rac{P_{
m trans}}{P_{
m long}} \sim rac{G_E}{G_M}$$

• G_E no longer discriminated against G_M at higher Q^2

Motivation

OLYMPUS – Setup and First Data Taking Data Analysis Summary

Polarization Transfer II

Motivation

OLYMPUS – Setup and First Data Taking Data Analysis Summary

Polarization Transfer II

Discrepancy between Rosenbluth and Polarization Transfer!

Motivation

OLYMPUS – Setup and First Data Taking Data Analysis Summary

Polarization Transfer II

Discrepancy between Rosenbluth and Polarization Transfer!

Possible explanation: Two Photon Exchange

Jürgen Diefenbach for the OLYMPUS Collaboration

OLYMPUS - Two Photon Exchange

Two Photon Exchange

Rosenbluth method takes into account only single photon exchange...

... but two (multiple) photon exchange can contribute!

Two Photon Exchange

Rosenbluth method takes into account only single photon exchange...

... but two (multiple) photon exchange can contribute!

Direct access to two photon exchange amplitude?

Accessing the Two Photon Exchange Amplitude

Interference between single and two photon exchange

Sign depends on sign of lepton charge!

$$\sigma(e^{-}p) = |M_{1\gamma}|^2 \alpha^2 - 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^3 + \dots$$

$$\sigma(e^{+}p) = |M_{1\gamma}|^2 \alpha^2 + 2 |M_{1\gamma}| |M_{2\gamma}| \alpha^3 + \dots$$

Cross section ratio for elastic e^+ and e^- proton scattering:

$$R = \frac{\sigma(e^+ p)}{\sigma(e^- p)} = 1 + \frac{4 \Re(M_{1\gamma}^{\dagger} M_{2\gamma})}{|M_{1\gamma}|^2}$$

Measurement of Two Photon Contribution

Current world data from the 1960s, several models/calculations

Measurement of Two Photon Contribution

OLYMPUS will determine the two-photon contribution to ${\sim}1\%$

Measurement of Two Photon Contribution

Other Experiments (projected accuracies)

- Novosibirsk experiment, VEPP-3
- preliminary results: arXiv:1112.5369

- CLAS experiment, Jefferson Lab
- first results: arXiv:1306.2286

Measurement of Two Photon Contribution

Other Experiments (kinematical reach)

Kinematic Reach of Two-Photon Experiments

Timeline

 Proposal 	09/2008
 DOE funding 	01/2010
 BLAST shipped to DESY 	spring 2010
 Modification of DORIS and Test experiment 	02/2010
 Detector assembly 	until 07/2011
Roll-in into DORIS	16.07.2011
 OLYMPUS test beamtime in DORIS 	08/2011
• First data taking	01-02/2012
 Detector upgrades 	summer 2012
 Second data taking 	10-12/2012
 Survey, Field mapping, etc. 	2013
 Data analysis 	ongoing

DORIS

OLYMPUS detector

- Large acceptance detector: $20^\circ < \theta < 80^\circ$ and $-15^\circ < \phi < 15^\circ$ $0.37 < \epsilon < 0.9$ and $0.6 < Q^2 < 2.2$ (GeV²/c²)
- Toroidal magnetic field
- Left/right symmetric (two sectors)
- Time of flight scintillator walls
- Drift chambers for lepton and proton tracking
- Luminosity monitoring: two independent systems:
 - 12° forward tracking telescopes (*ep*) internally redundant (GEMs + MWPCs)
 - 1.2° very forward calorimeters (ee)

OLYMPUS detector

OLYMPUS detector

Target

- internal, windowless target
- 60 cm long storage cell
- elliptical cross section 27mm×9mm
- 100μm aluminum
- \bullet flows up to 1.0 sccm H_2
- $3 \cdot 10^{15} \text{ atoms/cm}^2$
- cryo-cooled to 40K
- MIT, INFN Ferrara
- hydrogen generator (electrolysis)

Drift Chambers

- jet style drift cells
 3 chambers per sector
- ullet $\sim 10\,000$ wires in total
- 954 sense wires
- ArCO₂ 90:10

Time of Flight Counters and Trigger

- 18 TOF bars per sector
- complete coverage of drift chamber acceptance
- ep elastic events: left & right coincidences
- top/bottom PMT readout for vertical impact position

Kinematic trigger: coincidence matrix for elastic ep kinematics

Luminosity Monitoring

- cross section ratio
- $\bullet~{\rm e^+/e^-}$ switch once per day
- \rightarrow Monitoring of (relative!) luminosity is crucial:

Two independent systems:

- 12 degree telescopes elastic ep, high ϵ
- 1.2° symmetric Møller/Bhabha calorimeters fast, quasi deadtime-free

12 degree Tracking Telescopes

Detect leptons from elastic ep at 12° for luminosity monitoring:

- 12° corresponds to high ϵ
 - \rightarrow two photon contribution small
- proton in opposite sector drift chamber
- trigger: plastic scintillators on 12° arm (PNPI, DESY) efficiency monitoring by downstream lead glass detectors (alternative 12° trigger)
- tracking elements: 3 GEMs + 3 MWPCs per arm redundancy + efficiency monitoring

12 degree Tracking Telescopes

Symmetric Møller/Bhabha Monitor

Symmetric Møller and Bhabha scattering (and annihilation)

- pure QED \rightarrow calculable
- completely independent from 12 degree monitors
- fast Cherenkov calorimeters with custom readout
 20 ns dead time vs. 96 ns bunch spacing
 → quasi dead-time free
- left/right coincidence, 1 GeV each
- elasic ep, 2 GeV single arm for cross checks

Symmetric Møller/Bhabha Monitor

Jürgen Diefenbach for the OLYMPUS Collaboration

OLYMPUS - Two Photon Exchange

OLYMPUS Data Taking – DORIS Performance

- beam current typ.
 >60 mA
- DORIS operation in top-up mode
- e⁺: top-up about every 2 minutes
- e⁻: top-up interruptions for PETRA refills with e⁺
- beam species switch: 30 to 60 minutes

OLYMPUS Data Taking – Integrated Luminosity

- well-balanced e⁺, e⁻ data sets
- additional negative toroid data (systematics!)
- \mathcal{L}_{int} goal of 4 fb⁻¹ exceeded!

Event Display

Elastic event candidate in main detector

Event Display

Elastic event candidate in 12 degree luminosity telescope

Data Analysis Progress

- Magnetic Field mapping analyzed, small improvements pending
- Beam Position monitors: calibration finished, analysis in progress (important for luminosity monitors!)
- Time of Flight: in good shape, still some improvements
- Wire Chamber tracking
 - complicated, but a lot of progress, still ongoing
 - alternative reconstruction code for cross-checks
- Luminosity
 - Møller/Bhabha: digitization underway, then study systematics
 - 12 degree Telescopes: details of detector efficiencies, resolutions, control effects of possible charge asymmetry!
- Monte Carlo
 - fully integrated with data analysis chain
 - radiative ep generator by MIT group in contact with other experiments for cross-checks
- e⁺p / e⁻p ratio analysis will be blinded!

Time of Flight Detectors

Time of Flight Detectors

Time of Flight Detectors

Time of Flight Detectors

TOF attenuation length - top PMT / bottom PMT vs. hit position

Time of Flight Detectors

<u>Wire</u> Chamber Tracking

Jürgen Diefenbach for the OLYMPUS Collaboration

Summary

Unique combination of OLYMPUS and DORIS:

 OLYMPUS will determine the contribution of two photon exchange to elastic ep scattering on the percent level

Data taking periods Feb 2012 and Nov/Dec 2012:

- top-up operation of DORIS
- daily routine switching of beam species
- anticipated data taking efficiency reached
- goal of \mathcal{L}_{int} of 4 fb $^{-1}$ exceeded
- analysis ongoing
- blinded analysis of cross section ratio!

OLYMPUS Collaboration

- Arizona State University, USA
- DESY, Deutschland
- Hampton University, USA
- INFN Bari, Ferrara, Rome, Italy
- MIT, USA
- Petersburg Nuclear Physics Institute, Russia
- Universität Bonn, Germany
- Universität Mainz, Germany
- University of Glasgow, UK
- University of New Hampshire, USA
- Yerevan Physics Institute, Armenia