
Design of the OLYMPUS simulation

J. C. Bernauer1 and A. Schmidt1

1Laboratory for Nuclear Science, MIT, Cambridge, Massachusetts 02139, USA
(Dated: February 18, 2013)

This paper is divided in two parts. First, we present our design for the OLYMPUS simulation.
This design builds on the ideas that were discussed during collaboration meetings in the early phases
of OLYMPUS. It extends the philosophy of the analysis framework, using plugins for modularity
and a common framework to enable code reuse. In the second part, we will reflect on some basic
principles of Monte Carlo simulations and how those principles guided our design. We introduce
the Monte Carlo technique for integration and connect this to our goal of extracting a ratio in an
efficient and accurate way.

I. SIMULATION DESIGN

A. Overall Data Flow

To gain an understanding of what is required of the
simulation’s design, it is worthwhile to revisit the struc-

ture of the current analysis. Figure 1 shows a chart rep-
resenting the data flow. The experiment produces raw
data, to which we apply track reconstruction software to
generate a tree of “cooked” data. Physics analyses are
applied to this cooked data to produce results.

Experiment Raw Data
Track

Reconstruction
Cooked Data

Physics
Analysis Result

FIG. 1. The data analysis chain: rectangular red nodes represent a software process, while the rounded blue nodes represent
some type of data object.

The OLYMPUS simulation must be situatied within
this design. We start with an event generator that pro-
duces the initial conditions of each event. This genera-
tor needs to include radiative effects and must produce
a lepton, a proton, and a (soft) photon. These initial
conditions are fed into a module, which propagates the
event through the detector system, calculating the effects
of matter in the paths of the particles. In the initial itera-
tion, these particles will be propagated using the Geant4
framework.

The end result of the propagation step should be a root
tree which contains all information from the track propa-
gation, such as true intersection points and times, energy
losses and so forth. The tree already in the simulation
may be used as the basis for this, but must be revisited
to make sure all of the needed information is included.

The first application of the simulation is to test and ex-
tend our understanding of the detectors and reconstruc-
tion methods. For this, we need to digitize the simulation
tree and produce a fake data tree with the same format
as the raw data. Then the standard analysis chain can
work on this data and a comparison with the true in-
put parameters is possible. This is depicted as path I in
Fig. 2.

By comparing the result from real data to that from
the fake data, we can refine our understanding of the

experiment. This process must be iterated until the sim-
ulation reproduces all features of the data. At this point,
we can be confident that our model of the experiment
is sufficiently sophisticated for reliable extraction of the
form factor ratio.

In principle, this brings us to a state where the ra-
tio may be extracted; the ratio from experimental data
divided by the ratio from the simulation is a direct mea-
sure of the two-photon-exchange contribution. In this ap-
proach, we have already accounted for effects from beam
position, slope, etc. and made an external application of
radiative corrections superfluous.

The approach in path I is likely to be computationally
expensive, making this analysis chain both time and re-
source intensive. However, it is possible to accelerate the
simulation at least for a subset of the required studies, if
not even for the full analysis. From the initial studies of
detector performance and track reconstruction, it possi-
ble to emulate the behavior of this part of the chain with
an appropriate detector response model and create faked
cooked data directly. This will speed up the simulation
data chain immensely. This latter approach is shown as
path II in Fig. 2.



2

I

II

Experiment Raw Data
Track

Reconstruction
Cooked Data

Physics
Analysis Result

Fake
Raw Data

Fake
Cooked Data

Generator Digitization

Generated
Events

Event
Propagation

Simulation
Tree

Fast Detector
Response

FIG. 2. Here’s the data analysis chain including MC.

B. Task List

To realize this design, we identify tasks which must
be completed. These tasks include those which must be
executed by the individual detector groups. We limit
ourselves here to only a coarse list—the individual tasks
must be broken up by the coordinator of the responsible
group into smaller problems suitable for an individual
project.

• Radiative generator

• Simulation output tree

• For each group:

– Accurate realization, e.g. geometry, in the
simulation

– Full digitization

– If needed, emulation of the detector response

• Refine physics analysis

II. NOTES ON THE MONTE CARLO METHOD

A. What is a Monte Carlo simulation?

The word simulation is a bit misleading, since the gen-
eral problem one has to solve is to describe the accep-
tance function of the detector system (including efficien-
cies, etc.). This problem leads to a multi-dimensional
integral. While it might be possible with immense effort
to solve the integral symbolically, a numerical approach
is normally used.

There are very efficient numerical algorithms for in-
tegration in one dimension. However, for integration in
multiple dimensions, all algorithms based on a grid tend
to converge with O(n−1/d), where n is the number of
calculations and d is the number of dimensions. For a
typical case, d can be very large so that all of these algo-
rithms converge very slowly.

Monte Carlo (MC) is a method of numerical integra-
tion employing a (pseudo) random sampling over the in-
tegration volume, which converges with O(n−1/2), albeit
with a worse constant factor. Several techniques can be
used to optimize this further (see the appendix), but for a
higher number of dimensions, MC is almost always faster.
Another advantage is that MC can be continuously re-
fined.

B. Correction or Simulation?

The standard way to get a cross section is to divide the
event count by the integrated luminosity and the detector
acceptance A,

dσ

dΩ
∼ ∆σ

∆Ω
=

N

Lint.A
.

The result is the differential cross section averaged over
the integration volume. A is typically found using the
MC approach described above. Practically, these integra-
tion volumes are bins in a histogram. The difference be-
tween differential cross section and its average over that
bin can be made arbitrary small by an appropriate his-
togramming choice.

This approach, however, neglects the effect of counts
being sorted into the wrong bin due to non-zero detector
and reconstruction resolution. This effect can be large if
the cross section varies widely between bins; a small frac-
tion of events from a high cross section bin can swamp a
low cross section bin. But MC offers a natural solution to
this problem. A realistic cross section and non-zero res-
olution can be included via MC into a simulation, now
producing a simulated event rate. As long as the simu-
lated rate and the measured rate are similar, their ratio
yields information on how the cross section in the simu-
lation differs from reality.

This philosophy of adding effects to a simulation for
comparison with real data is extremely pertinent to the
subject of “corrections.” Historically, corrections for
beam slope/position and radiation among others were



3

made to measurement at the end of the analysis. In-
stead, these effects can be added to a simulation making
a correction unecessary. The advantage is that a simu-
lation will naturally account for the correlation between
many different effects. If, say, the wire chamber accep-
tance correlates with beam position and beam slope, then
a simulation will convolve those effects. Trying to make
a manual correction that accounts for that convolution is
tedious, especially if other effects are involved as well.

C. The relation between weights and cross section

We have had several discussions about unweighted and
weighted simulations. The terms “weighted” and “un-
weighted” have often been used incorrectly and we feel
that they obscure the important question: “Does the sim-
ulation include a cross section?” In this section we re-
view how cross sections and weights are incorporated into
simulations with the goal of establishing some consistent
vocabulary.

The most basic example is an unweighted simulation
without a cross section included. In an unweighted MC,
every event contributes the same amount to the bin it
gets sorted into. Every event is on an equal footing. To
add a cross section to this simulation, the simplest ap-
proach would be to calculate a cross section for every
event, and apply this cross section as a weight. Now the
MC is weighted; an event adds its weight to the bin it
gets sorted into. A single bin will be filled by events with
different weights.

It is also possible to include a cross section without
using weights. In this method events are drawn from a
suitable non-uniform distribution. In this method, more
samples will be drawn from a high cross section region
than from a low cross section region.

As a final example, it is sometimes practical to in-
troduce weights into an MC even when a cross section
is not included. If one were to simulate the acceptance
function of a detector in center-of-mass coordinates, but
was interested in the result in lab coordinates, then one
would calculate the jacobian of the transformation for
each event and apply it as a weight.

The current plan for the radiative generator will in-
clude a cross section and will make use of a mixture of
both weighted and unweighted methods to incorporate it.
For variables over which we want to integrate, like photon
momentum or angle, we will draw from an appropriate
distribution, while the dependence on the lepton angles
will be modeled using weights. The rational behind this
is given in the appendix.

D. Radiative generator

The classical approach to handle the physics beyond
the simple Born picture is to correct the intermediate re-
sult by means of one of the various radiative correction

formulas, depending on an ill-defined cut in the radia-
tive tail. However, this is suboptimal for several reasons.
As noted above, this does not take any correlation with
other effects into account. Furthermore, all these formu-
las need a well defined cut-off, which is hard for us to
accomplish. It is therefore much better to actually use
a radiative generator, which produces the correct cross
section and kinematics including radiated photons from
internal bremsstrahlung.

E. Time varying parameters

It is clear that the beam parameters like position and
slope correlate with beam current and vary over time,
even within single runs. This is probably true for many
other corrections as well, since many of them correlate
with beam current. MC is the ideal way to handle the
complicated convolution of these effects efficiently and
correctly; still, we must account for the parameter varia-
tion over time. There are two principal ways to organize
this:

1. We chop up runs and find short time periods where
the parameters are similar enough that we can use
a common simulation setup: constant beam offset,
slope, etc.

2. We extend the simulation to vary the simulated
beam position etc. during the generation of events
to follow their variation over time as given in the
data.

It is obvious that 1 is tedious at best. What is “sim-
ilar enough?” As we find a new effects, we would have
to chop up the runs again. So, approach 2 seems supe-
rior. As a remark: it does not matter whether we run
one big simulation with the complete development over
time included, or a do a simulation for every run. The
total number of calculated samples will be the same in
either case. For the latter, we would just distribute the
allocated sample count according to the integrated lu-
minosity of each run. In any case, the number of MC
samples should be large enough that we can neglect any
error from the stochastic aspect of the MC integration.

For ease of use, we will follow the approach to simulate
each run individually. This has the benefit that we can
combine different sets of runs at will without having to
rerun the simulation, saving time when doing these kind
of systematic tests.

As described above, we will have to reach a point where
simulation and experiment match. Then, for the final
extraction of the ratio, we will build a double ratio of
experiment and simulation,

R =

∑
i y

e+,i
exp /

∑
i y

e+,i
sim∑

i y
e−,i
exp /

∑
i y

e−,i
sim

,

with y the experimental or simulated yield in a given Q2

bin. If the simulation includes everything except TPE,



4

we get the result we are after: a measurement of the TPE
contribution. If we include a model calculation of TPE,
the result will tell us how good this particular model is
at describing our data.

F. Modular design

We think it was very helpful to split up functional-
ity of the analysis into plugins. It was rare that broken
code in one plugin prevented people from using other
parts. By contrast, the current simulation is monolithic,
which makes independent development by the individual
groups complicated. Given our good record using plu-
gin architecture, we plan to integrate the simulation into
the cooker framework, using plugins to realize the gener-
ator, the propagation, the digitization (including smear-
ing) and the emulation modules described above. This
has the added benefit that we can make use of all the
cooker functionality and can possibly avoid duplicating
code in the existing plugins.

By realizing the generator and propagation modules as
cooker plugins, it becomes possible to use the slow control
information from the raw data files to directly inform the
simulation about the time-evolution of the experimental
conditions. This can be augmented with information in
the init files or secondary root files for parameters which
can not be extracted easily.

III. SUMMARY

MC is an efficient method for properly accounting for
many correlated systematic effects. By modeling the ex-
periment as closely as possible, including the time vari-
ation of experimental parameters, we will improve the
accuracy of our result. Our radiative generator will incor-
porate a cross section by using a combination of weight-
ing and cleverly chosen probability distributions, mini-
mizing the computational cost. Building on the expe-
riences with the cooker framework for the analysis, we
present a modular and flexible design for the OLYMPUS
simulation, which will be adequate for all of our needs,
from tuning the reconstruction to producing the final re-
sult. The modular design decouples expensive tasks from
those that must be repeated often, and facilitates paral-
lel code development. We list the tasks needed to realize
this design and stress that it is the responsibility of the
individual groups for developing the digitization and em-
ulation of their respective detectors.

Appendix A: Error Analysis in MC

First, we would like to decouple the concept of single
MC event from the concept of a scattering event in an
experiment. In a simulation, the problem being solved is
an integral, so the “events” that are simulated are, more

precisely put, samples. We will refer to them as such in
the Appendix.

A second point of clarification has to do with the un-
certainty in MC integration. It is easy to get this un-
certainty confused with the statistical uncertainty of the
experiment itself (for which we typically associate a rela-

tive error of 1/
√
N). The uncertainty of an MC integral

reflects the deviation from the true value of that integral
and is driven by the numerical and stochastic properties
of the Monte Carlo method.

In the special case of constant weights and good
(pseudo) random numbers, the expected relative error

has an upper bound of 1/
√
N where N the number of

events in a bin. This is number is only an upper bound
because the knowledge of the total number of events gen-
erated reduces the statistical uncertainty. However the
upper bound is a good estimate if both the number of
bins and N are large.

If the events have non-constant weights, the error is en-
larged, because the bin content now depends on the vari-
ance of the weights in a bin. A good upper bound for the
expected relative error is

√∑
w2/

∑
w. This increase in

uncertainty can be demonstrated by an extreme exam-
ple: suppose a bin is filled with 1000 events of weight
1, and three events with weight 3000. In this case, the
first 1000 events make up only 10% of the complete bin
content. Thus, the error of the bin in this example is
dominated by the uncertainty of only a few events.

Since the error in a bin increases with the variance
of the weights in a bin, it is desirable to have all the
weights be the same, i.e. to make the variance of the
weights zero. In order to make the weights constant, one
needs to draw samples from a distribution proportional to
the cross section. For a radiative generator, this is a hard
task because it requires forming a cumulative distribution
function and inverting it. Rather than attempting this on
the actual cross section, one can choose an approximate
distribution that is easy to invert. The weight of a sample
is then given by the ratio of true to approximate cross
section, which has a small variance. This approach was
used in the generator for the Mainz proton scattering
experiment with great success.

For OLYMPUS, this method does not solve all of our
problems: if we generate samples according to a func-
tion having a similar lepton-angle dependence like the
real cross section, we will have a simulation error with a
similar shape as the data errors, rapidly increasing with
larger angles. We would therefore waste a lot of com-
puting time generating events for the low-angle bins in
order to reach the desired precision for the high-angle
bins. This can be mitigated by having a less strongly
falling angular dependence and applying weights. While
the weights would be quite different for the smallest and
the largest angle, the weights in any given angular bin
would be closer together. We would need to find a bal-
ance to get optimal efficiency. A different approach is to
split up the angular range in regions and to combine the
result from these separate simulation runs. A decision on



5

which method is better can be made when the generator
is in a working state.

There is one interesting technique to speed up the con-
vergence of an MC. Instead of using pseudo-random num-
bers, one uses “quasi-random” numbers (also called low-

discrepancy sequences), which are number sequences that
tend to fill a region without “clumping.” The benefit is
faster convergence, while the cost is greater difficulty in
making an analytic estimate of the error. It is possible
to mix pseudo- and quasi-random numbers for different
dimensions of the integration.


