<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type="text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
 --></style><title>May 4, 2010</title></head><body>
<div align="center"><font face="Times New Roman"
color="#000000"><b>Seminar on</b></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><b><br></b></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><b>Modern Optics and Spectroscopy</b></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><b><br></b></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><i><b>Novel reaction mechanisms revealed by
high-resolution Ion Imaging</b></i></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><i><b><br></b></i></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><b>Arthur Suits</b>,</font></div>
<div align="center"><font face="Times New Roman" color="#000000">Wayne
State University</font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><br></font></div>
<div align="center"><font face="Times New Roman"
color="#000000">Tuesday, May 4, 2010</font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><br></font></div>
<div align="center"><font face="Times New Roman" color="#000000">12:00
- 1:00 p.m.</font></div>
<div align="center"><font face="Times"
color="#000000"><br></font></div>
<div align="center"><font face="Times"
color="#000000"><br></font></div>
<div align="center"><font face="Times New Roman" color="#000000">Ion
imaging techniques have emerged as a powerful means of investigating
elementary atomic and molecular interactions. Recent developments have
led to extraordinary velocity resolution and opened the door to a
range of applications. We will introduce these techniques and show two
distinct applications: in the first, we present a study of the
dissociation of formaldehyde to CO + H2 that reveals a new "roaming
atom" reaction mechanism that avoids the region of the transition
state entirely. The combination of state-correlated photodissociation
results and photofragment excitation spectra allow us to explore the
detailed dynamics of this pathway as well as the "conventional"
molecular elimination process, and to explore the energy dependent
branching in this multichannel unimolecular reaction. Our second
series of studies explores novel primary photochemical processes
relevant to hydrocarbon growth processes in the atmosphere of Saturn's
moon, Titan</font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><br></font></div>
<div align="center"><font face="Times New Roman"
color="#000000"><br></font></div>
<div align="center"><font face="Times New Roman" color="#000000">Grier
Room, MIT Bldg 34-401</font></div>
<div align="center"><font face="Times New Roman"
color="#000000">Refreshments served after the lecture</font></div>
</body>
</html>