<!doctype html public "-//W3C//DTD W3 HTML//EN">
<html><head><style type="text/css"><!--
blockquote, dl, ul, ol, li { padding-top: 0 ; padding-bottom: 0 }
--></style><title>February 27, 2007</title></head><body>
<div><font face="Arial" color="#000000">Seminar on<br>
<b>Modern Optics and Spectroscopy<br>
<br>
<br>
Dana Dlott</b>,<br>
<br>
University of Illinois<br>
<br>
<i><b>Ultrafast vibrational spectroscopy with high time and space
resolution<br>
<br>
</b></i>February 27, 2007</font><br>
<font face="Arial" color="#000000"></font></div>
<div><font face="Arial" color="#000000">12:00 - 1:00 p.m.</font></div>
<div><font face="Arial" color="#000000"><br></font></div>
<div><font face="Arial" color="#000000">Grier Room 34-401</font></div>
<div><font face="Arial" color="#000000"><br>
<br>
<br>
</font><font face="Times New Roman" color="#000000">Time resolved
vibrational spectroscopy is a well-known method for studying
molecular<br>
processes. We don't ordinarily think of this method as having
high spatial resolution. However</font></div>
<div><font face="Times New Roman" color="#000000">in experiments using
nonlinear, multidimensional and coherent vibrational spectroscopies
with<br>
molecular nanostructures where the locations of molecular
reporter groups are precisely known,<br>
it becomes possible to watch vibrational energy with angstrom spatial
resolution and femtosecond<br>
time resolution. In fact we have developed the world's thinnest
thermometer just one atom wide.<br>
A few examples will be discussed: vibrational energy flow across
a molecule in a liquid,<br>
vibrational energy across an interfacial monolayer, and
vibrational energy down a molecular</font></div>
<div><font face="Times New Roman" color="#000000">chain.</font></div>
</body>
</html>