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Birth:

>

>

Awodey, Warren: Homotopy theoretic models of identity
types (2006~2007)

Voevodsky: Notes on type systems (2006~2009)
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Suggested readings

Recent work in homotopy type theory
Slides of a talk by Steve Awodey at the AMS meeting January 2014

Notes on homotopy A\-calculus
Vladimir Voevodsky

Homotopy Type Theory

A book by the participants of the Univalent Foundation Program
held at the IAS in 2012-13
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Main features of Hott

Hott replaces

> sets by spaces,

> isomorphisms by equivalences,

v

proofs of equality x = y by paths x ~~ y,

v

the relation x = y by the homotopy relation x ~ y,

v

equivalences X ~ Y by paths X ~» Y.
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Overview of the talk

7 — tribe h — tribe

\ /

Martin-Lof tribe

|

Voevodsky tribe

|

Elementary higher topos?
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Quadrable objects and maps

An object X of a category C is quadrable if the cartesian product
A x X exists for every object A € C.

A map p: X — B is quadrable if the object (X, p) of the
category C/B is quadrable. This means that the pullback square

Axg X —" X
Pli lp
A f B

exists for every map f : A — B.

The projection p; is called the base change of p: X — B along
f:A—= B.
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Tribes

Definition
A tribe is a category C with terminal object x and equipped with a
class of maps F C C satisfying the following conditions:

» F contains the isomorphisms and is closed under composition;

> every map in F is quadrable and F is closed under base
changes;
» the map X — * belongs to F for every object X € C.

A map in F is called a fibration.
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Fibrations and families

The fiber E(a) of a fibration p: E — A at a point a: A is defined
by the pullback square

E(a)——~E
Lk
* A.

A fibration p: E — Ais a family (E(x) : x € A) of objects of C
parametrized by a variable element x € A.

_ =

A tribe is a collection of families closed under certain operations.
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General contexts

Type declarations can be iterated:

A Type
x:AF B(x): Type
x: Ay B(x)F C(x,y): Type
x:Ay:B(x),z: C(x,y) F E(x,y,z): Type

|

N=(x:Ay:B(x),z: C(x,y)) is a general context.

A<~—B~<~—
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The syntaxic category

An object of the syntaxic category is a formal expression [['] where
[ is a context.

Amapf:[x:Al —[y:B]isaterm

x:AFf(x):B

Two maps f,g : [x: Al — [y : B] are equal if f(x) = g(x)
x:AFf(x)=g(x): B
Composition of maps is obtained by substituting:

x: Ak f(x): B, y:Btg(y):C
x: Ak g(f(x)): C
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Homomorphism of tribes

A homomorphism of tribes is a functor F : C — D which

> takes fibrations to fibrations;
> preserves base changes of fibrations;

> preserves terminal objects.

Remark: The category of tribes is a 2-category if a 2-cell is a
natural transformation.
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Base change=change of parameters

If f: A— B is a map in a tribe C, then the base change functor
f*:C(B) — C(A)
is a homomorphism of tribes.

In type theory, it is expressed by the following deduction rule:
y:BFE(y): Type
x:AF E(f(x)) : Type.
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Extension of context

The base change functor is : C — C(A) along the map A — * is a
homomorphism of tribes.

By definition ia(E) = (E x A, p2).

The functor is : C — C(A) is expressed by the deduction rule:

FE: Type
x:AF E: Type.

In type theory, this is called a context extension.
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Total space and summation

The forgetful functor C(A) — C associates to a fibration p: E — A
its total space E =) ., E(x).

It is a summation operation
Ya:C(A)—=C
It leads to the X-introduction rule,
x:AF E(x): Type
- Z E(x) : Type.
x:A

Aterm t: ) . E(x)isa pairt =(a,u), where a: Aand u: E(a).
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Display maps

The projection
pr : Z E(x) = A
x:A

is called a display map.

(Gambino and Garner) The syntaxic category of type theory is a
tribe, where a fibration is a map isomorphic to a display map
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Push-forward

If f: A— B is a fibration in a tribe C, then the push-forward

functor
fi : C(A) — C(B)

defined by putting f(E, p) = (E, fp).
The functor fi : C(A) — C(B) is left adjoint to the functor f*.

Formally, we have

(E)) = Y E().

f(x)=y

for a term y : B.
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Polynomial rings

Recall that if R is a commutative ring, then the polynomial ring
R[x] is obtained by adjoining freely a new element x to R.

The freeness of the extension i : R — R[x] means that for every
homomorphism f : R — S and every element s € S

there exists a unique homomorphism g : R[x] — S such that
gi =1 and g(x) =s,

R— '~ R[x]

\ig

S

The element x € R[x] is generic.
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Generic terms

Theorem
The extension i : C — C(A) is obtained by freely adding a term xa
of type A to the tribe C.

Thus, C(A) = C[xa] with x4 : i(A).

By construction, i(A) = (A x A, p2) and xy is the diagonal
54 A= AxA.

The diagonal d4 : i(A) is generic.
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Function space EA

Let A be a quadrable object in a category C.

The exponential of an object E € C by the object A is an object
EA € C equipped with a map € : EA x A — E called the evaluation

such that:

» for every object X € C and every map u: X X A — E, there
exists a unique map v : X — EA such that (v x A) = u.

EAX A

We write v = M (u).
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Ma(E) € C equipped with a map € : Ma(E) x A — E called the
evaluation such that:

> pe = p2
» for every object X € C and every map u: X x A— E in C/A

there exists a unique map v : X — lM4(E) such that
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Let A be a quadrable object in a category C.

The space of sections of an object E = (E,p) € C/A is an object
Ma(E) € C equipped with a map € : Ma(E) x A — E called the
evaluation such that:

> pe = p2
» for every object X € C and every map u: X x A— E in C/A

there exists a unique map v : X — lM4(E) such that
e(vxA)=u.

We write v = M\ (u).
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Products along a map

Let f : A — B be a quadrable map in a category C.
The product M¢(E) of E = (E,p) € C/A along f : A— B is the

space of sections of the map (E, fp) — (A, f) in the category C/B.

E NE)
|
A B

f
_—
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Products along a map

Let f : A — B be a quadrable map in a category C.
The product M¢(E) of E = (E,p) € C/A along f : A— B is the

space of sections of the map (E, fp) — (A, f) in the category C/B.

E Me(E)
(o

For every y : B we have

N(E)y) = [] E()

f(x)=y

27 /67
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m-tribes

Definition
We say that a tribe C is w-closed, and that it is a 7-tribe, if every
fibration E — A has a product along any fibration f : A— B and

the structure map MN¢(E) — B is a fibration,
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m-tribes

Definition
We say that a tribe C is w-closed, and that it is a 7-tribe, if every
fibration E — A has a product along any fibration f : A— B and

the structure map MN¢(E) — B is a fibration,

The functor
My C(A) — C(B)

is right adjoint to the functor f* : C(B) — C(A).

If C is a m-tribe, then so is the tribe C(A) for every object A € C.
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Examples of m-tribes

> A cartesian closed category, where a fibration is a projection;

> A locally cartesian category is a [1-tribe in which every map is
a fibration:
» The category of small groupoids Grpd, where a fibration is an

iso-fibration (Hofmann, Streicher);

v

The category of Kan complexes Kan, where a fibrations is a
Kan fibration (Voevodsky, Streicher);
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[M-introduction rule

In a N-tribe, we have the following l-introduction rule:
x:AF E(x): Type

H H E(x) : Type.
x:A

And a rule for the formation of \-terms:
x:AF t(x): E(x)
F(x)t(x) [ Ex)
x:A

30/67
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Anodyne maps

Definition
We say that a map u: A — B in a tribe C is anodyne if it has the
left lifting property with respect to every fibration f : X — Y.
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Anodyne maps

Definition
We say that a map u: A — B in a tribe C is anodyne if it has the
left lifting property with respect to every fibration f : X — Y.

This means that every commutative square

A—2-X

o

B—t.y

has a diagonal filler d : B — X ( du = a and fd = b).
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Homotopical tribes

Definition
We say that a tribe C is homotopical, or a h-tribe, if the
following two conditions are satisfied
» every map f : A — B admits a factorization f = pu with u an
anodyne map and p a fibration;

» the base change of an anodyne map along a fibration is
anodyne.

If C is a h-tribe, then so is the tribe C(A) for every object A € C.
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» The category of groupoids Grpd, where a functor is anodyne
if it is a monic equivalence (Hofmann, Streicher);

» The category of Kan complexes Kan, where a map is anodyne
if it is a monic homotopy equivalence (Streicher, Warren,
Awodey,Voevodsky);
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Examples of h-tribes

» The category of groupoids Grpd, where a functor is anodyne
if it is a monic equivalence (Hofmann, Streicher);

» The category of Kan complexes Kan, where a map is anodyne
if it is a monic homotopy equivalence (Streicher, Warren,
Awodey,Voevodsky);

» The syntaxic category of Martin-Lof type theory, where a

fibration is a map isomorphic to a display map
(Gambino-Garner).
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Path object

A path object for an object A € C is a factorisation of the
diagonal A: A— A x A as an anodyne map r : A — PA followed
by a fibration (s,t) : PA — A X A,

PA

34 /67
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|dentity type

In Martin-Lof type theory, there is a type constructor which
associates to every type A a dependant type

x:Ay:A Flda(x,y) : Type

called the identity type of A,
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|dentity type

In Martin-Lof type theory, there is a type constructor which
associates to every type A a dependant type

x:Ay:A Flda(x,y) : Type
called the identity type of A,
A term p: lda(x, y) is regarded as a proof that x = y.

There is a term
x:A Fr(x): lda(x, x)

called the reflexivity term. It is a proof that x = x.

35/67
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The J-rule

There is an operation J which takes commutative square

with p a fibration,
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The J-rule

There is an operation J which takes commutative square

It shows that the reflexivity term r : A — Id4 is anodyne!

36
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|dentity type as a path object

Awodey and Warren:

The identity type

lda= > lda(x,y)

(x,y):AxA

is a path object for A.
lda
(s;t)

A—AXA
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Mapping path space

The mapping path space P(f) of a map f : A — B is defined by
the pullback square
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Mapping path space

The mapping path space P(f) of a map f : A — B is defined by
the pullback square

P(f) —2—~PB
Pll ls
A B.

This gives a factorization f = pu: A — P(f) — B with
u= (1a, rf) an anodyne map and p = tp, a fibration.

The homotopy fiber of a map f : A— B at a point y : B is the
fiber of the fibration p : P(f) — B at the same point,

fibe(y) = Ida(f(x), ).
x:A
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Homotopic maps
Let C be a h-tribe.

A homotopy h: f ~~ g between two maps f,g: A— BinC
isamap h: A— PB

\

A—h. pB

[

such that sh=f and th=g.

In type theory, h is regarded as a proof that f = g,

x: AE h(x): ldg(f(x), g(x)).
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The homotopy category

Let C be a h-tribe.

Theorem
The homotopy relation f ~ g is a congruence on the arrows of C.

The homotopy category Ho(C) is the quotient category C/ ~.

A map f: X — Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X — % is a homotopy
equivalence.
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Local homotopy categories

A map f:(E,p) — (F,q) in C/Ais called a weak equivalence if
the map f : E — F is a homotopy equivalence in C.
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Local homotopy categories
A map f:(E,p) — (F,q) in C/Ais called a weak equivalence if
the map f : E — F is a homotopy equivalence in C.

The local homotopy category Ho(C/A) is defined to be the
category of fraction

Ho(C/A) = W, (C/A)
where Wj is the class of weak equivalences in C/A.

The inclusion C(A) — C/A induces an equivalence of categories:

Ho(C(A)) = Ho(C/A)
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Homotopy pullback

A square

PR

J=<—>

C
D
is a homotopy pullback if the canonical map A — B x’[’, Cisa
homotopy equivalence, where B ><f,’J C=(f xg)*(PD)

-

B xh C D

| ]

BxC—=DxD
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h-propositions

A map u: A— B is homotopy monic if the square

is homotopy pullback.
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h-propositions

A map u: A— B is homotopy monic if the square

A A
].A\L iu
A—">B
is homotopy pullback.
Definition
An object A € C is a h-proposition if the map A — x is homotopy
monic.

An object A is a h-proposition if and only if the diagonal
A — A X A is a homotopy equivalence.
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Homotopy initial objects

Let C be a h-tribe.

An object L € C is homotopy initial if every fibration p: E — L
has a section o : 1. — E,
ik

L.

A homotopy initial object remains initial in the homotopy category
Ho(C).
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there exists a section 0 : ALUB — E such that oi = f and 0j = g.
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Homotopy coproducts

An object AU B equipped with a pair of maps i,j: A, B— AUB

such that for every fibration p : E — ALl B and every pair of maps
f,g: A B— E such that pf =i and pg =,

E
/ix
p
A——AUB~<~—B

i J

there exists a section 0 : ALUB — E such that oi = f and 0j = g.

A homotopy coproduct remains a coproduct in the homotopy
category Ho(C).
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Homotopy natural number object

It is a homotopy initial object (N, s,0) in the category of triples
(X,f,a), for XeC, f: X — Xanda:X.
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Homotopy natural number object

It is a homotopy initial object (N, s,0) in the category of triples
(X,f,a), for XeC, f: X — Xanda:X.

For every fibration p : X — N, such that pf = sp and p(a) =0

*#X#X

*x—>N—>N

there exists a section ¢ : N — X such that s = fo and ¢(0) = a.

A homotopy natural number object (N, s,0) is not necessarily a
natural number object in the homotopy category Ho(C).
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Definition
We say that a tribe C = (C, F) is a ML-tribe if the following
conditions are satisfied

» C is a lN-tribe and a h-tribe;
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Martin-Lof tribe

Definition
We say that a tribe C = (C, F) is a ML-tribe if the following
conditions are satisfied

» C is a lN-tribe and a h-tribe;

> (extensionality) the product functor ¢ : C(A) — C(B)
preserves the homotopy relation for every fibration f : A — B.

If C is a ML-tribe, then so is the tribe C(A) for every A € C.
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Extensionality
The axiom of extensionality implies that the product functor

Ma:C(A) > C

preserves the homotopy relation.
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Extensionality

The axiom of extensionality implies that the product functor
Ma:C(A) —C
preserves the homotopy relation.

It follows that there is a map
H/dB (x)) = ldia B (f, &)

defined for any pair of maps f,g: A — B.
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Examples of ML-tribes

Theorem
(Hofmann and Streicher) The category of small groupoids,
where a fibration is a Grothendieck fibration.

Theorem
(Awodey-Warren-Voevodsky) The category of Kan complexes,
where a fibration is a Kan fibration.

Theorem
(Gambino-Garner) The syntaxic category of Martin-Lof type
theory, where a fibration is a map isomorphic to a display map.
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Decidability

A set S is decidable if the relations x € S and the equality relation
x =y for x,y € § can be decided recursively.
» The set of natural numbers N is decidable:

» Not every finitely presented group is decidable (Post).

Martin-Lof’s theorem :The relations-t: Aand ks =1t: A are
decidable in type theory with the axiom of extensionality and with
natural numbers.

Corollary

The syntaxic category of Martin-Lof type theory with homotopy
natural numbers is decidable
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Elementary topos
Let £ be a category with finite limits

Recall that a monomorphism t: 1 — Q in £ is said to be universal
if for every monomorphism S — A there exists a unique map
f:A— Q, such that f71(t) =S,

1

|

Q

|

The pair (2, t) is called a sub-object classifier.

_

f

P

Lawvere and Tierney:

Definition
An elementary topos is a locally cartesian category with a
sub-object classifier €.
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Homotopical pre-sheaf

Let C be a ML-tribe.
Definition

A presheaf F : C°? — Set homotopical if it respects the
homotopy relation: f ~ g = F(f) = F(g).
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Homotopical pre-sheaf

Let C be a ML-tribe.

Definition
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Homotopical pre-sheaf

Let C be a ML-tribe.

Definition
A presheaf F : C°? — Set homotopical if it respects the
homotopy relation: f ~ g = F(f) = F(g).

A homotopical presheaf is the same thing as a functor
F : Ho(C)°P — Set.

A homotopical presheaf F is representable if the functor
F : Ho(C)°P — Set is representable.
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IsContr(X)

If E € C, then the presheaf F : C°?P — Set defined by putting

F(A) = 1, if Ex is. contractible in C(A)
)  otherwise

is homotopical.
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IsContr(X)

If E € C, then the presheaf F : C°?P — Set defined by putting

F(A) = 1, if Ep is. contractible in C(A)
()  otherwise
is homotopical.

It is represented by the h-proposition

IsContr(E) =qef Z H lde(x, y)

x:E y:E

Compare with
(3xe€E)(VWeE)x=y
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IsEq(f)

If f: X — Y is an arbitrary map, then the presheaf F : C°? — Set
defined by putting

FA) = if fa: X4 — X4 is an equivalence
10 otherwise

is homotopical.
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IsEq(f)

If f: X — Y is an arbitrary map, then the presheaf F : C°? — Set
defined by putting

F(A) = 1, if f3 : X4 — X4 is an equivalence
|0 otherwise

is homotopical.

It is represented by the h-proposition

ISEq(f) =get H IsCont(fibs(y)),
yY

where fibs(y) is the homotopy fiber of f at y : Y.
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Eq(X,Y)

If X, Y €C, let us put

Eq(X,Y) =aet > IsEq(f)
f:X—=Y

For every object A € C, there is a bijection between the maps
A— Eq(X,Y)

in Ho(C) and the isomorphism X4 >~ Y4 in Ho(C(A))
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EqA(E)

For every fibration p: E — A let us put

Eqa(E =>") Eq(E

x:A y:A
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EqA(E)

For every fibration p: E — A let us put

Eqa(E =) Eq(E ¥))

x:A y:A

The identity 1g(,) is represented by a term
x: Ak u(x): Eq(E(x), E(x))

which defines the unit map u: A — Eqa(E),
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Univalent fibration

Voevodsky:

Definition
A fibration E — A is univalent if the unit map v : A — Eqa(E) is
a homotopy equivalence.
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Univalent fibration

Voevodsky:

Definition
A fibration E — A is univalent if the unit map v : A — Eqa(E) is
a homotopy equivalence.

In which case the fibration Ega(E) — A x A is equivalent to the
fibration PA — A x A.

PA = Equ(E)
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Uncompressible fibration

To compress a Kan fibration p : X — A is to find a homotopy
pullback square
X—=Y

L

A—f.B

in which f is not homotopy monic.
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Uncompressible fibration

To compress a Kan fibration p : X — A is to find a homotopy

pullback square
X—=Y

L

A—LsB
in which f is not homotopy monic.

A Kan fibration is uncompressible if and only if it is univalent.

Every Kan fibration X — A is the pullback of an uncompressible
fibration X’ — A’ along a homotopy surjection A — A’.
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Voevodsky tribes

Voevodsky: There is a universal small Kan fibration U’ — U which
is univalent.
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Voevodsky tribes

Voevodsky: There is a universal small Kan fibration U’ — U which
is univalent.

Definition
A V-tribe is a ML-tribe equipped with a small fibration U’ — U
which is universal and univalent.

Voevodsky's conjecture : The relationst: Aands=t: A are
decidable in V-type theory.
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What is an elementary higher topos?

Grothendieck topos

Elementary topos

Higher topos

EH-topos?
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Generalised model categories
Let £ be a category with terminal object T and initial object L.
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Generalised model categories
Let £ be a category with terminal object T and initial object L.

Definition
A generalized model structure on £ is a triple (C, W, F) of classes
maps in £ such that

» WV satisfies 3-for-2;

> the pairs (CNW,F) and (C, W N F) are weak factorization

systems;

» the maps in F are quadrable and maps in C is co-quadrable;
A generalized model category is the category £ equipped with a
generalised model structure (C, W, F).

A map in C is called a cofibration, a map in YW a weak equivalence
and a map in F a fibration.

An object A is cofibrant if the map L — A is a cofibration, an
object X is fibrant if the map X — T is a fibration.
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Remark : If every object of a generalized model category is
cofibrant, then the class F determines the classes C and W.
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Remark : If every object of a generalized model category is
cofibrant, then the class F determines the classes C and W.

A generalized model structure is right proper if the base change of
a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is excellent if it is right proper and
the base change of a cofibration along a fibration is a cofibration,

A generalized model structure is m-closed if the product of a
fibration along a fibration exists and is a fibration.

A generalized model structure is smooth if it is excellent, 7-closed
and every object is cofibrant.
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EH-topos?

A first rough definition:

An EH-topos is a smooth generalised model category £ equipped
a univalent universal (small) fibration U" — U.

Critic 1: The properties of the class of small fibrations should not
be left in the dark. We may need a hierarchy of universes
U:U :Up:---.

Critic 2: The definition should include existence of a (homotopy,
strict 7) natural number object N. We may want N to be fibrant.

Critic 3: We may need to suppose that every fibration factors as a
homotopy surjection followed by a fibrant monomorphism.

65 /67
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What is mathematics?

Georg Cantor: " The essence of mathematics lies in its freedom.”

Bertrand Russell: “Mathematics is the subject in which we never
know what we are talking about, nor whether what we are saying is
true”

Godfrey H. Hardy "Beauty is the first test; there is no permanent
place in the world for ugly mathematics”

John von Neumann: "In mathematics you don't understand things.
You just get used to them”
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THANK YOU!
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