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The emergence of Homotopy Type Theory

Gestation:

I Russell: Mathematical logic based on the theory of types
(1908)

I Church: A formulation of the simple theory of types (1940)

I Lawvere: Equality in hyperdoctrines and comprehension
schema as an adjoint functor (1968)

I Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)

I Hofmann, Streicher: The groupoid interpretation of type
theory (1995)

Birth:

I Awodey, Warren: Homotopy theoretic models of identity
types (2006∼2007)

I Voevodsky: Notes on type systems (2006∼2009)
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I Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)

I Hofmann, Streicher: The groupoid interpretation of type
theory (1995)

Birth:

I Awodey, Warren: Homotopy theoretic models of identity
types (2006∼2007)

I Voevodsky: Notes on type systems (2006∼2009)

2 / 67



The emergence of Homotopy Type Theory

Gestation:

I Russell: Mathematical logic based on the theory of types
(1908)

I Church: A formulation of the simple theory of types (1940)

I Lawvere: Equality in hyperdoctrines and comprehension
schema as an adjoint functor (1968)
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Suggested readings

Recent work in homotopy type theory
Slides of a talk by Steve Awodey at the AMS meeting January 2014

Notes on homotopy λ-calculus
Vladimir Voevodsky

Homotopy Type Theory
A book by the participants of the Univalent Foundation Program
held at the IAS in 2012-13
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Axiomatic Homotopy Theory

Henry Whitehead (1950):
The ultimate aim of algebraic homotopy is to construct a purely
algebraic theory, which is equivalent to homotopy theory in the
same sort of way that analytic is equivalent to pure projective
geometry.

Examples of axiomatic systems

I Triangulated categories (Verdier 1963);

I Homotopical algebra (Quillen 1967);

I Homotopy theories (Heller 1988)

I Theory of derivators (Grothendieck 198?)

I Homotopy type theory

I Elementary higher topos?
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Main features of Hott

Hott replaces

I sets by spaces,

I isomorphisms by equivalences,

I proofs of equality x = y by paths x  y ,

I the relation x = y by the homotopy relation x ∼ y ,

I equivalences X ' Y by paths X  Y .
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Potential applications of Hott

I to constructive mathematics,

I to proof verification and proof assistant,

I to homotopy theory.

A wish list:

I to higher topos theory,

I higher category theory,

I derived algebraic geometry.
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Category theory as a bridge

Category theory

��

pp ,,Type theory

22

$$

Homotopy theory

mm

yy
Hott
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Overview of the talk

tribe

**tt
π − tribe

**

h − tribe

tt
Martin-Löf tribe

��
Voevodsky tribe

��
Elementary higher topos?
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Quadrable objects and maps

An object X of a category C is quadrable if the cartesian product
A× X exists for every object A ∈ C.

A map p : X → B is quadrable if the object (X , p) of the
category C/B is quadrable. This means that the pullback square

A×B X

p1

��

p2 // X

p

��
A

f // B

exists for every map f : A→ B.

The projection p1 is called the base change of p : X → B along
f : A→ B.
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Tribes

Definition
A tribe is a category C with terminal object ? and equipped with a
class of maps F ⊆ C satisfying the following conditions:

I F contains the isomorphisms and is closed under composition;

I every map in F is quadrable and F is closed under base
changes;

I the map X → ? belongs to F for every object X ∈ C.

A map in F is called a fibration.
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Examples of tribes

I A category with finite products, if the fibrations are the
projections;

I The category of small groupoids Grpd if the fibrations are the
iso-fibrations;

I The category of Kan complexes Kan if the fibrations are the
Kan fibrations;

I The category of fibrant objects of a Quillen model category.
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Fibrations and families

The fiber E (a) of a fibration p : E → A at a point a : A is defined
by the pullback square

E (a)

��

// E

p

��
?

a // A.

A fibration p : E → A is a family (E (x) : x ∈ A) of objects of C
parametrized by a variable element x ∈ A.

A tribe is a collection of families closed under certain operations.
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Types and terms

An object E of a tribe C is called a type. Notation:

` E : Type

A map t : ?→ E in C is called a term of type E . Notation:

` t : E
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The local tribe C(A)

For an object A of a tribe C.

The local tribe C(A) is the full sub-category of C/A whose objects
(E , p) are the fibrations p : E → A with codomain A.

A map f : (E , p)→ (F , q) in C(A) is called a fibration if the map
f : E → F is a fibration in C.

An object (E , p) of C(A) is a dependant type in context x : A.

x : A ` E (x) : Type

A section t of p : E → A is called a dependant term t(x) : E (x)

x : A ` t(x) : E (x)
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General contexts

Type declarations can be iterated:

A : Type

x : A ` B(x) : Type

x : A, y : B(x) ` C (x , y) : Type

x : A, y : B(x), z : C (x , y) ` E (x , y , z) : Type

E

��
A Boo Coo

Γ = (x : A, y : B(x), z : C (x , y)) is a general context.
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The syntaxic category

An object of the syntaxic category is a formal expression [Γ] where
Γ is a context.

A map f : [x : A]→ [y : B] is a term

x : A ` f (x) : B

Two maps f , g : [x : A]→ [y : B] are equal if f (x) = g(x)

x : A ` f (x) = g(x) : B

Composition of maps is obtained by substituting:

x : A ` f (x) : B, y : B ` g(y) : C

x : A ` g(f (x)) : C
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Homomorphism of tribes

A homomorphism of tribes is a functor F : C → D which

I takes fibrations to fibrations;

I preserves base changes of fibrations;

I preserves terminal objects.

Remark: The category of tribes is a 2-category if a 2-cell is a
natural transformation.
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Base change=change of parameters

If f : A→ B is a map in a tribe C, then the base change functor

f ? : C(B)→ C(A)

is a homomorphism of tribes.

In type theory, it is expressed by the following deduction rule:

y : B ` E (y) : Type

x : A ` E (f (x)) : Type.
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Extension of context

The base change functor iA : C → C(A) along the map A→ ? is a
homomorphism of tribes.

By definition iA(E ) = (E × A, p2).

The functor iA : C → C(A) is expressed by the deduction rule:

` E : Type

x : A ` E : Type.

In type theory, this is called a context extension.
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Total space and summation

The forgetful functor C(A)→ C associates to a fibration p : E → A
its total space E =

∑
x :A E (x).

It is a summation operation

ΣA : C(A)→ C

It leads to the Σ-introduction rule,

x : A ` E (x) : Type

`
∑
x :A

E (x) : Type.

A term t :
∑

x :A E (x) is a pair t = (a, u), where a : A and u : E (a).
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Display maps

The projection

pr1 :
∑
x :A

E (x)→ A

is called a display map.

(Gambino and Garner) The syntaxic category of type theory is a
tribe, where a fibration is a map isomorphic to a display map
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Push-forward

If f : A→ B is a fibration in a tribe C, then the push-forward
functor

f! : C(A)→ C(B)

defined by putting f!(E , p) = (E , fp).

The functor f! : C(A)→ C(B) is left adjoint to the functor f ?.

Formally, we have

f!(E )(y) =
∑

f (x)=y

E (x).

for a term y : B.
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Polynomial rings

Recall that if R is a commutative ring, then the polynomial ring
R[x ] is obtained by adjoining freely a new element x to R.

The freeness of the extension i : R → R[x ] means that for every
homomorphism f : R → S and every element s ∈ S

there exists a unique homomorphism g : R[x ]→ S such that
gi = f and g(x) = s,

R
i //

f
''

R[x ]

g

��
S

The element x ∈ R[x ] is generic.
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Generic terms

Theorem
The extension i : C → C(A) is obtained by freely adding a term xA
of type A to the tribe C.

Thus, C(A) = C[xA] with xA : i(A).

By construction, i(A) = (A× A, p2) and xA is the diagonal
δA : A→ A× A.

The diagonal δA : i(A) is generic.
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Function space EA

Let A be a quadrable object in a category C.

The exponential of an object E ∈ C by the object A is an object
EA ∈ C equipped with a map ε : EA × A→ E called the evaluation
such that:

I for every object X ∈ C and every map u : X × A→ E , there
exists a unique map v : X → EA such that ε(v × A) = u.

EA × A

ε

��
X × A

v×A
99

u // E

We write v = λA(u).
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Space of sections

Let A be a quadrable object in a category C.

The space of sections of an object E = (E , p) ∈ C/A is an object
ΠA(E ) ∈ C equipped with a map ε : ΠA(E )× A→ E called the
evaluation such that:

I pε = p2

I for every object X ∈ C and every map u : X × A→ E in C/A
there exists a unique map v : X → ΠA(E ) such that
ε(v × A) = u.

ΠA(E )× A

ε

��
X × A

v×A
88

u // E

We write v = λA(u).
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Products along a map

Let f : A→ B be a quadrable map in a category C.

The product Πf (E ) of E = (E , p) ∈ C/A along f : A→ B is the
space of sections of the map (E , fp)→ (A, f ) in the category C/B.

E

p

��

Πf (E )

��
A

f //// B

For every y : B we have

Πf (E )(y) =
∏

f (x)=y

E (x)
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π-tribes

Definition
We say that a tribe C is π-closed, and that it is a π-tribe, if every
fibration E → A has a product along any fibration f : A→ B and
the structure map Πf (E )→ B is a fibration,

The functor
Πf : C(A)→ C(B)

is right adjoint to the functor f ? : C(B)→ C(A).

If C is a π-tribe, then so is the tribe C(A) for every object A ∈ C.
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Examples of π-tribes

I A cartesian closed category, where a fibration is a projection;

I A locally cartesian category is a Π-tribe in which every map is
a fibration;

I The category of small groupoids Grpd, where a fibration is an
iso-fibration (Hofmann, Streicher);

I The category of Kan complexes Kan, where a fibrations is a
Kan fibration (Voevodsky, Streicher);
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Π-introduction rule

In a Π-tribe, we have the following Π-introduction rule:

x : A ` E (x) : Type

`
∏
x :A

E (x) : Type.

And a rule for the formation of λ-terms:

x : A ` t(x) : E (x)

` (λx)t(x) :
∏
x :A

E (x)
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Anodyne maps

Definition
We say that a map u : A→ B in a tribe C is anodyne if it has the
left lifting property with respect to every fibration f : X → Y .

This means that every commutative square

A

u
��

a // X

f
��

B
b // Y

has a diagonal filler d : B → X ( du = a and fd = b).
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Homotopical tribes

Definition
We say that a tribe C is homotopical, or a h-tribe, if the
following two conditions are satisfied

I every map f : A→ B admits a factorization f = pu with u an
anodyne map and p a fibration;

A

u ��

f // B

E

p

??

I the base change of an anodyne map along a fibration is
anodyne.

If C is a h-tribe, then so is the tribe C(A) for every object A ∈ C.
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Examples of h-tribes

I The category of groupoids Grpd, where a functor is anodyne
if it is a monic equivalence (Hofmann, Streicher);

I The category of Kan complexes Kan, where a map is anodyne
if it is a monic homotopy equivalence (Streicher, Warren,
Awodey,Voevodsky);

I The syntaxic category of Martin-Löf type theory, where a
fibration is a map isomorphic to a display map
(Gambino-Garner).
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Path object

A path object for an object A ∈ C is a factorisation of the
diagonal ∆ : A→ A× A as an anodyne map r : A→ PA followed
by a fibration (s, t) : PA→ A× A,

PA

(s,t)

��
A

r

==

∆ // A× A.
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Identity type

In Martin-Löf type theory, there is a type constructor which
associates to every type A a dependant type

x :A, y :A ` IdA(x , y) : Type

called the identity type of A,

A term p : IdA(x , y) is regarded as a proof that x = y .

There is a term
x :A ` r(x) : IdA(x , x)

called the reflexivity term. It is a proof that x = x .
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The J-rule

There is an operation J which takes commutative square

A

r
��

u // E

p

��
IdA IdA

with p a fibration, to a diagonal filler d = J(u, p)

A

r
��

u // E

p

��
IdA

d

==

IdA

It shows that the reflexivity term r : A→ IdA is anodyne!
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Identity type as a path object

Awodey and Warren:

The identity type

IdA =
∑

(x ,y):A×A

IdA(x , y)

is a path object for A.

IdA

〈s,t〉

��
A

r

==

∆ // A× A
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Mapping path space

The mapping path space P(f ) of a map f : A→ B is defined by
the pullback square

P(f )

p1

��

p2 // PB

s
��

A
f // B.

This gives a factorization f = pu : A→ P(f )→ B with
u = 〈1A, rf 〉 an anodyne map and p = tp2 a fibration.

The homotopy fiber of a map f : A→ B at a point y : B is the
fiber of the fibration p : P(f )→ B at the same point,

fibf (y) =
∑
x :A

IdA(f (x), y).
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Homotopic maps
Let C be a h-tribe.

A homotopy h : f  g between two maps f , g : A→ B in C
is a map h : A→ PB

B

A

g //

f
//

h // PB

s

==

t

!!
B

such that sh = f and th = g .

In type theory, h is regarded as a proof that f = g ,

x : A ` h(x) : IdB(f (x), g(x)).
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The homotopy category

Let C be a h-tribe.

Theorem
The homotopy relation f ∼ g is a congruence on the arrows of C.

The homotopy category Ho(C) is the quotient category C/ ∼.

A map f : X → Y in C is called a homotopy equivalence if it is
invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is contractible if the map X → ? is a homotopy
equivalence.
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Local homotopy categories

A map f : (E , p)→ (F , q) in C/A is called a weak equivalence if
the map f : E → F is a homotopy equivalence in C.

The local homotopy category Ho(C/A) is defined to be the
category of fraction

Ho(C/A) = W−1
A (C/A)

where WA is the class of weak equivalences in C/A.

The inclusion C(A)→ C/A induces an equivalence of categories:

Ho(C(A)) = Ho(C/A)
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Homotopy pullback

A square
A //

��

C

��
B // D

is a homotopy pullback if the canonical map A→ B ×h
D C is a

homotopy equivalence, where B ×h
D C = (f × g)?(PD)

B ×h
D C //

��

D

��
B × C

f×g // D × D
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h-propositions

A map u : A→ B is homotopy monic if the square

A
1A //

1A
��

A

u
��

A
u // B

is homotopy pullback.

Definition
An object A ∈ C is a h-proposition if the map A→ ? is homotopy
monic.

An object A is a h-proposition if and only if the diagonal
A→ A× A is a homotopy equivalence.
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n-types

The fibration 〈s, t〉 : PA→ A× A defines an object P(A) of the
local tribe C(A× A).

An object A is

I a 0-type if P(A) is a h-proposition in C(A× A);

I a (n + 1)-type if P(A) is a n-type in C(A× A).

A 0-type is also called a h-set.

An object A is a h-set if the diagonal A→ A× A is homotopy
monic.
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Homotopy initial objects

Let C be a h-tribe.

An object ⊥ ∈ C is homotopy initial if every fibration p : E → ⊥
has a section σ : ⊥ → E ,

E

p
��
⊥.

σ

]]

A homotopy initial object remains initial in the homotopy category
Ho(C).
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Homotopy coproducts

An object A t B equipped with a pair of maps i , j : A,B → A t B

such that for every fibration p : E → A t B and every pair of maps
f , g : A,B → E such that pf = i and pg = j ,

E

p
��

A
i
//

f

<<

A t B B
j

oo

g
bb

there exists a section σ : A t B → E such that σi = f and σj = g .

A homotopy coproduct remains a coproduct in the homotopy
category Ho(C).
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Homotopy natural number object

It is a homotopy initial object (N, s, 0) in the category of triples
(X , f , a), for X ∈ C, f : X → X and a : X .

For every fibration p : X → N, such that pf = sp and p(a) = 0

?
a // X

f //

p
��

X

p
��

?
0 // N s // N

there exists a section σ : N→ X such that σs = f σ and σ(0) = a.

A homotopy natural number object (N, s, 0) is not necessarily a
natural number object in the homotopy category Ho(C).
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Martin-Löf tribe

Definition
We say that a tribe C = (C,F) is a ML-tribe if the following
conditions are satisfied

I C is a Π-tribe and a h-tribe;

I (extensionality) the product functor Πf : C(A)→ C(B)
preserves the homotopy relation for every fibration f : A→ B.

If C is a ML-tribe, then so is the tribe C(A) for every A ∈ C.
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Extensionality

The axiom of extensionality implies that the product functor

ΠA : C(A)→ C

preserves the homotopy relation.

It follows that there is a map∏
x :A

IdB(f (x), g(x))→ Id[A,B](f , g)

defined for any pair of maps f , g : A→ B.
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Examples of ML-tribes

Theorem
(Hofmann and Streicher) The category of small groupoids,
where a fibration is a Grothendieck fibration.

Theorem
(Awodey-Warren-Voevodsky) The category of Kan complexes,
where a fibration is a Kan fibration.

Theorem
(Gambino-Garner) The syntaxic category of Martin-Löf type
theory, where a fibration is a map isomorphic to a display map.
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Decidability

A set S is decidable if the relations x ∈ S and the equality relation
x = y for x , y ∈ S can be decided recursively.

I The set of natural numbers N is decidable;

I Not every finitely presented group is decidable (Post).

Martin-Löf’s theorem :The relations ` t : A and ` s = t : A are
decidable in type theory with the axiom of extensionality and with
natural numbers.

Corollary

The syntaxic category of Martin-Löf type theory with homotopy
natural numbers is decidable
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Elementary topos
Let E be a category with finite limits

Recall that a monomorphism t : 1→ Ω in E is said to be universal
if for every monomorphism S → A there exists a unique map
f : A→ Ω, such that f −1(t) = S ,

S //

��

1

t
��

A
f // Ω

The pair (Ω, t) is called a sub-object classifier.

Lawvere and Tierney:

Definition
An elementary topos is a locally cartesian category with a
sub-object classifier Ω.
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Small fibrations and universes

If C = (C,F) is a tribe, we shall say that a class of maps F ′ ⊆ F is
a class of small fibrations if the pair (C,F ′) is a tribe.

A small fibration q : U ′ → U is universal if for every small
fibration p : E → A there exists a cartesian square:

E //

p

��

U ′

q

��
A // U.

A universe is the codomain of a universal small fibration U ′ → U.

A small type E is a term of type U.

Martin-Löf axiom: There is a universe U.
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Homotopical pre-sheaf

Let C be a ML-tribe.

Definition
A presheaf F : Cop → Set homotopical if it respects the
homotopy relation: f ∼ g ⇒ F (f ) = F (g).

A homotopical presheaf is the same thing as a functor
F : Ho(C)op → Set.

A homotopical presheaf F is representable if the functor
F : Ho(C)op → Set is representable.
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IsContr(X )

If E ∈ C, then the presheaf F : Cop → Set defined by putting

F (A) =

{
1, if EA is contractible in C(A)

∅ otherwise

is homotopical.

It is represented by the h-proposition

IsContr(E ) =def

∑
x :E

∏
y :E

IdE (x , y)

Compare with
(∃x ∈ E ) (∀y ∈ E ) x = y
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IsEq(f )

If f : X → Y is an arbitrary map, then the presheaf F : Cop → Set
defined by putting

F (A) =

{
1, if fA : XA → XA is an equivalence

∅ otherwise

is homotopical.

It is represented by the h-proposition

IsEq(f ) =def

∏
y :Y

IsCont(fibf (y)),

where fibf (y) is the homotopy fiber of f at y : Y .
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Eq(X ,Y )

If X ,Y ∈ C, let us put

Eq(X ,Y ) =def

∑
f :X→Y

IsEq(f )

For every object A ∈ C, there is a bijection between the maps

A→ Eq(X ,Y )

in Ho(C) and the isomorphism XA ' YA in Ho(C(A))
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EqA(E )

For every fibration p : E → A let us put

EqA(E )(x , y) =
∑
x :A

∑
y :A

Eq(E (x),E (y))

The identity 1E(x) is represented by a term

x : A ` u(x) : Eq(E (x),E (x))

which defines the unit map u : A→ EqA(E ),
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Univalent fibration

Voevodsky:

Definition
A fibration E → A is univalent if the unit map u : A→ EqA(E ) is
a homotopy equivalence.

In which case the fibration EqA(E )→ A× A is equivalent to the
fibration PA→ A× A.

PA

〈s,t〉 ""

' // EqA(E )

(s,t)yy
A× A
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Uncompressible fibration

To compress a Kan fibration p : X → A is to find a homotopy
pullback square

X //

��

Y

��
A

f // B

in which f is not homotopy monic.

A Kan fibration is uncompressible if and only if it is univalent.

Every Kan fibration X → A is the pullback of an uncompressible
fibration X ′ → A′ along a homotopy surjection A→ A′.
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Voevodsky tribes

Voevodsky: There is a universal small Kan fibration U ′ → U which
is univalent.

Definition
A V-tribe is a ML-tribe equipped with a small fibration U ′ → U
which is universal and univalent.

Voevodsky’s conjecture : The relations ` t : A and ` s = t : A are
decidable in V-type theory.
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What is an elementary higher topos?

Grothendieck topos Elementary topos

Higher topos EH-topos?
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Generalised model categories
Let E be a category with terminal object > and initial object ⊥.

Definition
A generalized model structure on E is a triple (C,W,F) of classes
maps in E such that

I W satisfies 3-for-2;

I the pairs (C ∩W,F) and (C,W ∩F) are weak factorization
systems;

I the maps in F are quadrable and maps in C is co-quadrable;

A generalized model category is the category E equipped with a
generalised model structure (C,W,F).

A map in C is called a cofibration, a map in W a weak equivalence
and a map in F a fibration.

An object A is cofibrant if the map ⊥ → A is a cofibration, an
object X is fibrant if the map X → > is a fibration.
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and a map in F a fibration.

An object A is cofibrant if the map ⊥ → A is a cofibration, an
object X is fibrant if the map X → > is a fibration.
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Remark : If every object of a generalized model category is
cofibrant, then the class F determines the classes C and W.

A generalized model structure is right proper if the base change of
a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is excellent if it is right proper and
the base change of a cofibration along a fibration is a cofibration,

A generalized model structure is π-closed if the product of a
fibration along a fibration exists and is a fibration.

A generalized model structure is smooth if it is excellent, π-closed
and every object is cofibrant.
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EH-topos?

A first rough definition:

An EH-topos is a smooth generalised model category E equipped
a univalent universal (small) fibration U ′ → U.

Critic 1: The properties of the class of small fibrations should not
be left in the dark. We may need a hierarchy of universes
U0 : U1 : U2 : · · · .

Critic 2: The definition should include existence of a (homotopy,
strict ?) natural number object N. We may want N to be fibrant.

Critic 3: We may need to suppose that every fibration factors as a
homotopy surjection followed by a fibrant monomorphism.
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What is mathematics?

Georg Cantor: ”The essence of mathematics lies in its freedom.”

Bertrand Russell: ”Mathematics is the subject in which we never
know what we are talking about, nor whether what we are saying is
true”

Godfrey H. Hardy ”Beauty is the first test; there is no permanent
place in the world for ugly mathematics”

John von Neumann: ”In mathematics you don’t understand things.
You just get used to them”
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THANK YOU!
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