## Categorical Homotopy Type Theory

André Joyal

UQÀM

MIT Topology Seminar, March 17, 2014

Gestation:

#### Gestation:

- ► Russell: Mathematical logic based on the theory of types (1908)
- ▶ **Church**: A formulation of the simple theory of types (1940)
- ► Lawvere: Equality in hyperdoctrines and comprehension schema as an adjoint functor (1968)
- ▶ Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)
- ► **Hofmann, Streicher**: The groupoid interpretation of type theory (1995)

#### Gestation:

- ► Russell: Mathematical logic based on the theory of types (1908)
- ▶ Church: A formulation of the simple theory of types (1940)
- ► Lawvere: Equality in hyperdoctrines and comprehension schema as an adjoint functor (1968)
- ▶ Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)
- ► **Hofmann, Streicher**: The groupoid interpretation of type theory (1995)

Birth:

#### Gestation:

- ► Russell: Mathematical logic based on the theory of types (1908)
- ▶ Church: A formulation of the simple theory of types (1940)
- ► Lawvere: Equality in hyperdoctrines and comprehension schema as an adjoint functor (1968)
- ▶ Martin-Löf: Intuitionistic theory of types (1971, 1975, 1984)
- ► **Hofmann, Streicher**: The groupoid interpretation of type theory (1995)

#### Birth:

- ► **Awodey, Warren**: Homotopy theoretic models of identity types (2006~2007)
- **▶ Voevodsky**: *Notes on type systems* (2006~2009)

### Suggested readings

Recent work in homotopy type theory
Slides of a talk by Steve Awodey at the AMS meeting January 2014

Notes on homotopy  $\lambda$ -calculus Vladimir Voevodsky

Homotopy Type Theory
A book by the participants of the Univalent Foundation Program held at the IAS in 2012-13

Henry Whitehead (1950):

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

#### Examples of axiomatic systems

Triangulated categories (Verdier 1963);

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);

Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Homotopy theories (Heller 1988)

### Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Homotopy theories (Heller 1988)
- ► Theory of derivators (Grothendieck 198?)

### Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Homotopy theories (Heller 1988)
- Theory of derivators (Grothendieck 198?)
- Homotopy type theory

### Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Homotopy theories (Heller 1988)
- Theory of derivators (Grothendieck 198?)
- Homotopy type theory
- ► Elementary higher topos?

### Henry Whitehead (1950):

The ultimate aim of algebraic homotopy is to construct a purely algebraic theory, which is equivalent to homotopy theory in the same sort of way that analytic is equivalent to pure projective geometry.

- Triangulated categories (Verdier 1963);
- Homotopical algebra (Quillen 1967);
- Homotopy theories (Heller 1988)
- Theory of derivators (Grothendieck 198?)
- Homotopy type theory
- ► Elementary higher topos?

### Hott replaces

sets by spaces,

- sets by spaces,
- isomorphisms by equivalences,

- sets by spaces,
- isomorphisms by equivalences,
- ▶ proofs of equality x = y by paths  $x \rightsquigarrow y$ ,

- sets by spaces,
- isomorphisms by equivalences,
- ▶ proofs of equality x = y by paths  $x \rightsquigarrow y$ ,
- ▶ the relation x = y by the homotopy relation  $x \sim y$ ,

- sets by spaces,
- isomorphisms by equivalences,
- ▶ proofs of equality x = y by paths  $x \rightsquigarrow y$ ,
- ▶ the relation x = y by the homotopy relation  $x \sim y$ ,
- equivalences  $X \simeq Y$  by paths  $X \rightsquigarrow Y$ .

to constructive mathematics,

- to constructive mathematics,
- to proof verification and proof assistant,

- to constructive mathematics,
- to proof verification and proof assistant,
- to homotopy theory.

- to constructive mathematics,
- to proof verification and proof assistant,
- to homotopy theory.

A wish list:

- to constructive mathematics,
- to proof verification and proof assistant,
- to homotopy theory.

#### A wish list:

to higher topos theory,

- to constructive mathematics,
- to proof verification and proof assistant,
- to homotopy theory.

#### A wish list:

- to higher topos theory,
- higher category theory,
- derived algebraic geometry.

- to constructive mathematics,
- to proof verification and proof assistant,
- to homotopy theory.

#### A wish list:

- to higher topos theory,
- higher category theory,
- derived algebraic geometry.

# Category theory as a bridge

# Category theory as a bridge



### Overview of the talk



## Quadrable objects and maps

An object X of a category  $\mathcal{C}$  is **quadrable** if the cartesian product  $A \times X$  exists for every object  $A \in \mathcal{C}$ .

An object X of a category  $\mathcal C$  is **quadrable** if the cartesian product  $A \times X$  exists for every object  $A \in \mathcal C$ .

A map  $p: X \to B$  is **quadrable** if the object (X, p) of the category C/B is quadrable.

An object X of a category  $\mathcal{C}$  is **quadrable** if the cartesian product  $A \times X$  exists for every object  $A \in \mathcal{C}$ .

A map  $p: X \to B$  is **quadrable** if the object (X, p) of the category C/B is quadrable. This means that the pullback square



exists for every map  $f: A \rightarrow B$ .

An object X of a category  $\mathcal{C}$  is **quadrable** if the cartesian product  $A \times X$  exists for every object  $A \in \mathcal{C}$ .

A map  $p: X \to B$  is **quadrable** if the object (X, p) of the category  $\mathcal{C}/B$  is quadrable. This means that the pullback square



exists for every map  $f: A \rightarrow B$ .

The projection  $p_1$  is called the **base change** of  $p: X \to B$  along  $f: A \to B$ .

#### Definition

A **tribe** is a category  $\mathcal C$  with terminal object  $\star$  and equipped with a class of maps  $\mathcal F\subseteq\mathcal C$  satisfying the following conditions:

#### Definition

A **tribe** is a category  $\mathcal{C}$  with terminal object  $\star$  and equipped with a class of maps  $\mathcal{F} \subseteq \mathcal{C}$  satisfying the following conditions:

 $\triangleright$   $\mathcal{F}$  contains the isomorphisms and is closed under composition;

#### Definition

A **tribe** is a category C with terminal object  $\star$  and equipped with a class of maps  $\mathcal{F} \subseteq C$  satisfying the following conditions:

- $ightharpoonup \mathcal{F}$  contains the isomorphisms and is closed under composition;
- every map in  $\mathcal{F}$  is quadrable and  $\mathcal{F}$  is closed under base changes;

#### Definition

A **tribe** is a category  $\mathcal C$  with terminal object  $\star$  and equipped with a class of maps  $\mathcal F\subseteq\mathcal C$  satisfying the following conditions:

- F contains the isomorphisms and is closed under composition;
- every map in F is quadrable and F is closed under base changes;
- ▶ the map  $X \to \star$  belongs to  $\mathcal{F}$  for every object  $X \in \mathcal{C}$ .

#### Definition

A **tribe** is a category  $\mathcal C$  with terminal object  $\star$  and equipped with a class of maps  $\mathcal F\subseteq\mathcal C$  satisfying the following conditions:

- $ightharpoonup \mathcal{F}$  contains the isomorphisms and is closed under composition;
- every map in F is quadrable and F is closed under base changes;
- ▶ the map  $X \to \star$  belongs to  $\mathcal{F}$  for every object  $X \in \mathcal{C}$ .

A map in  $\mathcal{F}$  is called a **fibration**.

A category with finite products, if the fibrations are the projections;

- ▶ A category with finite products, if the fibrations are the projections;
- ► The category of small groupoids **Grpd** if the fibrations are the iso-fibrations;

- ► A category with finite products, if the fibrations are the projections;
- The category of small groupoids Grpd if the fibrations are the iso-fibrations;
- ► The category of Kan complexes Kan if the fibrations are the Kan fibrations;

- ▶ A category with finite products, if the fibrations are the projections;
- The category of small groupoids Grpd if the fibrations are the iso-fibrations;
- The category of Kan complexes Kan if the fibrations are the Kan fibrations;
- The category of fibrant objects of a Quillen model category.

- ▶ A category with finite products, if the fibrations are the projections;
- The category of small groupoids Grpd if the fibrations are the iso-fibrations;
- The category of Kan complexes Kan if the fibrations are the Kan fibrations;
- The category of fibrant objects of a Quillen model category.

The **fiber** E(a) of a fibration  $p: E \rightarrow A$  at a point a: A is defined by the pullback square



The **fiber** E(a) of a fibration  $p: E \rightarrow A$  at a point a: A is defined by the pullback square



A fibration  $p: E \to A$  is a **family**  $(E(x): x \in A)$  of objects of C parametrized by a variable element  $x \in A$ .

The **fiber** E(a) of a fibration  $p: E \rightarrow A$  at a point a: A is defined by the pullback square



A fibration  $p: E \to A$  is a **family**  $(E(x): x \in A)$  of objects of C parametrized by a variable element  $x \in A$ .

A tribe is a collection of families closed under certain operations.

An object E of a tribe  $\mathcal C$  is called a **type**.

An object E of a tribe  $\mathcal C$  is called a **type**. Notation:

An object E of a tribe  $\mathcal C$  is called a **type**. Notation:

 $\vdash E : \mathit{Type}$ 

An object E of a tribe C is called a **type**. Notation:

 $\vdash E : Type$ 

A map  $t : \star \to E$  in C is called a **term** of type E.

An object E of a tribe C is called a **type**. Notation:

 $\vdash E : Type$ 

A map  $t : \star \to E$  in C is called a **term** of type E. Notation:

An object E of a tribe C is called a **type**. Notation:

 $\vdash E : Type$ 

A map  $t : \star \to E$  in C is called a **term** of type E. Notation:

 $\vdash t : E$ 

For an object A of a tribe C.

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

An object (E, p) of C(A) is a **dependant type** in **context** x : A.

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

An object (E, p) of C(A) is a **dependant type** in **context** x : A.

$$x : A \vdash E(x) : Type$$

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

An object (E, p) of C(A) is a **dependant type** in **context** x : A.

$$x : A \vdash E(x) : Type$$

A section t of  $p: E \to A$  is called a **dependant term** t(x): E(x)

For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

An object (E, p) of C(A) is a **dependant type** in **context** x : A.

$$x : A \vdash E(x) : Type$$

A section t of  $p: E \to A$  is called a **dependant term** t(x): E(x)

$$x : A \vdash t(x) : E(x)$$



For an object A of a tribe C.

The **local tribe** C(A) is the full sub-category of C/A whose objects (E, p) are the fibrations  $p : E \to A$  with codomain A.

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}(A)$  is called a fibration if the map  $f:E\to F$  is a fibration in  $\mathcal{C}$ .

An object (E, p) of C(A) is a **dependant type** in **context** x : A.

$$x : A \vdash E(x) : Type$$

A section t of  $p: E \to A$  is called a **dependant term** t(x): E(x)

$$x : A \vdash t(x) : E(x)$$



#### General contexts

Type declarations can be iterated:

$$A: \mathit{Type}$$
 
$$x: A \vdash B(x): \mathit{Type}$$
 
$$x: A, y: B(x) \vdash C(x, y): \mathit{Type}$$
 
$$x: A, y: B(x), z: C(x, y) \vdash E(x, y, z): \mathit{Type}$$

#### General contexts

Type declarations can be iterated:

$$A: \mathit{Type}$$
 $x: A \vdash B(x): \mathit{Type}$ 
 $x: A, y: B(x) \vdash C(x, y): \mathit{Type}$ 
 $x: A, y: B(x), z: C(x, y) \vdash E(x, y, z): \mathit{Type}$ 

$$E \downarrow A \longleftarrow B \longleftarrow C$$

#### General contexts

Type declarations can be iterated:

 $\Gamma = (x : A, y : B(x), z : C(x, y))$  is a general context.

An object of the syntaxic category is a formal expression  $[\Gamma]$  where  $\Gamma$  is a context.

An object of the syntaxic category is a formal expression  $[\Gamma]$  where  $\Gamma$  is a context.

A map  $f:[x:A] \rightarrow [y:B]$  is a term

$$x : A \vdash f(x) : B$$

An object of the syntaxic category is a formal expression  $[\Gamma]$  where  $\Gamma$  is a context.

A map  $f:[x:A] \rightarrow [y:B]$  is a term

$$x : A \vdash f(x) : B$$

Two maps  $f, g : [x : A] \rightarrow [y : B]$  are equal if f(x) = g(x)

$$x: A \vdash f(x) = g(x): B$$

An object of the syntaxic category is a formal expression  $[\Gamma]$  where  $\Gamma$  is a context.

A map  $f:[x:A] \rightarrow [y:B]$  is a term

$$x : A \vdash f(x) : B$$

Two maps  $f, g : [x : A] \rightarrow [y : B]$  are equal if f(x) = g(x)

$$x: A \vdash f(x) = g(x): B$$

Composition of maps is obtained by substituting:

$$\frac{x:A\vdash f(x):B,\qquad y:B\vdash g(y):C}{x:A\vdash g(f(x)):C}$$

A **homomorphism** of tribes is a functor  $F : \mathcal{C} \to \mathcal{D}$  which

A **homomorphism** of tribes is a functor  $F : \mathcal{C} \to \mathcal{D}$  which

takes fibrations to fibrations;

A **homomorphism** of tribes is a functor  $F : \mathcal{C} \to \mathcal{D}$  which

- takes fibrations to fibrations;
- preserves base changes of fibrations;

#### A **homomorphism** of tribes is a functor $F : \mathcal{C} \to \mathcal{D}$ which

- takes fibrations to fibrations;
- preserves base changes of fibrations;
- preserves terminal objects.

A **homomorphism** of tribes is a functor  $F: \mathcal{C} \to \mathcal{D}$  which

- takes fibrations to fibrations;
- preserves base changes of fibrations;
- preserves terminal objects.

Remark: The category of tribes is a 2-category if a 2-cell is a natural transformation.

# Base change=change of parameters

## Base change=change of parameters

If  $f: A \to B$  is a map in a tribe C, then the base change functor

$$f^*: \mathcal{C}(B) \to \mathcal{C}(A)$$

is a homomorphism of tribes.

## Base change=change of parameters

If  $f: A \to B$  is a map in a tribe C, then the base change functor

$$f^*: \mathcal{C}(B) \to \mathcal{C}(A)$$

is a homomorphism of tribes.

In type theory, it is expressed by the following deduction rule:

$$\frac{y:B\vdash E(y):\mathit{Type}}{x:A\vdash E(f(x)):\mathit{Type}}.$$

The base change functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  along the map  $A \to \star$  is a homomorphism of tribes.

The base change functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  along the map  $A \to \star$  is a homomorphism of tribes.

By definition  $i_A(E) = (E \times A, p_2)$ .

The base change functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  along the map  $A \to \star$  is a homomorphism of tribes.

By definition  $i_A(E) = (E \times A, p_2)$ .

The functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  is expressed by the *deduction rule*:

The base change functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  along the map  $A \to \star$  is a homomorphism of tribes.

By definition  $i_A(E) = (E \times A, p_2)$ .

The functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  is expressed by the *deduction rule*:

$$\frac{\vdash E : \mathit{Type}}{x : A \vdash E : \mathit{Type}}.$$

The base change functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  along the map  $A \to \star$  is a homomorphism of tribes.

By definition  $i_A(E) = (E \times A, p_2)$ .

The functor  $i_A : \mathcal{C} \to \mathcal{C}(A)$  is expressed by the *deduction rule*:

$$\frac{\vdash E : \mathit{Type}}{x : A \vdash E : \mathit{Type}}.$$

In type theory, this is called a **context extension**.

The forgetful functor  $C(A) \to C$  associates to a fibration  $p : E \to A$  its *total space*  $E = \sum_{x:A} E(x)$ .

The forgetful functor  $C(A) \to C$  associates to a fibration  $p : E \to A$  its *total space*  $E = \sum_{x:A} E(x)$ .

It is a summation operation

$$\Sigma_A:\mathcal{C}(A) o\mathcal{C}$$

The forgetful functor  $C(A) \to C$  associates to a fibration  $p: E \to A$  its total space  $E = \sum_{x:A} E(x)$ .

It is a summation operation

$$\Sigma_A:\mathcal{C}(A)\to\mathcal{C}$$

It leads to the  $\Sigma$ -introduction rule,

$$\frac{x:A \vdash E(x): \mathit{Type}}{\vdash \sum_{x:A} E(x): \mathit{Type}}.$$

The forgetful functor  $C(A) \to C$  associates to a fibration  $p : E \to A$  its *total space*  $E = \sum_{x:A} E(x)$ .

It is a summation operation

$$\Sigma_{\mathcal{A}}:\mathcal{C}(\mathcal{A})\to\mathcal{C}$$

It leads to the  $\Sigma$ -introduction rule,

$$\frac{x:A\vdash E(x):\mathit{Type}}{\vdash \sum_{x:A} E(x):\mathit{Type}}.$$

A term  $t: \sum_{x:A} E(x)$  is a pair t = (a, u), where a: A and u: E(a).

# Display maps

## Display maps

The projection

$$pr_1: \sum_{x:A} E(x) \to A$$

is called a display map.

### Display maps

The projection

$$pr_1: \sum_{x:A} E(x) \to A$$

is called a display map.

(Gambino and Garner) The syntaxic category of type theory is a tribe, where a fibration is a map isomorphic to a display map

If  $f:A\to B$  is a fibration in a tribe  $\mathcal C$ , then the *push-forward* functor

$$f_!:\mathcal{C}(A)\to\mathcal{C}(B)$$

defined by putting  $f_1(E, p) = (E, fp)$ .

If  $f:A\to B$  is a fibration in a tribe  $\mathcal C$ , then the *push-forward* functor

$$f_!:\mathcal{C}(A)\to\mathcal{C}(B)$$

defined by putting  $f_1(E, p) = (E, fp)$ .

The functor  $f_!: \mathcal{C}(A) \to \mathcal{C}(B)$  is left adjoint to the functor  $f^*$ .

If  $f: A \rightarrow B$  is a fibration in a tribe C, then the *push-forward* functor

$$f_!:\mathcal{C}(A)\to\mathcal{C}(B)$$

defined by putting  $f_!(E, p) = (E, fp)$ .

The functor  $f_!: \mathcal{C}(A) \to \mathcal{C}(B)$  is left adjoint to the functor  $f^*$ .

Formally, we have

$$f_!(E)(y) = \sum_{f(x)=y} E(x).$$

for a term y:B.

# Polynomial rings

Recall that if R is a commutative ring, then the polynomial ring R[x] is obtained by adjoining freely a new element x to R.

Recall that if R is a commutative ring, then the polynomial ring R[x] is obtained by adjoining freely a new element x to R.

The freeness of the extension  $i:R\to R[x]$  means that for every homomorphism  $f:R\to S$  and every element  $s\in S$ 

Recall that if R is a commutative ring, then the polynomial ring R[x] is obtained by adjoining freely a new element x to R.

The freeness of the extension  $i: R \to R[x]$  means that for every homomorphism  $f: R \to S$  and every element  $s \in S$ 

there exists a unique homomorphism  $g:R[x]\to S$  such that gi=f and g(x)=s,



Recall that if R is a commutative ring, then the polynomial ring R[x] is obtained by adjoining freely a new element x to R.

The freeness of the extension  $i:R\to R[x]$  means that for every homomorphism  $f:R\to S$  and every element  $s\in S$ 

there exists a unique homomorphism  $g:R[x]\to S$  such that gi=f and g(x)=s,



The element  $x \in R[x]$  is **generic**.

#### **Theorem**

The extension  $i: \mathcal{C} \to \mathcal{C}(A)$  is obtained by freely adding a term  $x_A$  of type A to the tribe  $\mathcal{C}$ .

#### **Theorem**

The extension  $i: \mathcal{C} \to \mathcal{C}(A)$  is obtained by freely adding a term  $x_A$  of type A to the tribe  $\mathcal{C}$ .

Thus,  $C(A) = C[x_A]$  with  $x_A : i(A)$ .

#### **Theorem**

The extension  $i: \mathcal{C} \to \mathcal{C}(A)$  is obtained by freely adding a term  $x_A$  of type A to the tribe  $\mathcal{C}$ .

Thus,  $C(A) = C[x_A]$  with  $x_A : i(A)$ .

By construction,  $i(A) = (A \times A, p_2)$  and  $x_A$  is the diagonal  $\delta_A : A \to A \times A$ .

#### **Theorem**

The extension  $i: \mathcal{C} \to \mathcal{C}(A)$  is obtained by freely adding a term  $x_A$  of type A to the tribe  $\mathcal{C}$ .

Thus,  $C(A) = C[x_A]$  with  $x_A : i(A)$ .

By construction,  $i(A) = (A \times A, p_2)$  and  $x_A$  is the diagonal  $\delta_A : A \to A \times A$ .

The diagonal  $\delta_A$  : i(A) is **generic**.

Let A be a quadrable object in a category  $\mathcal{C}.$ 

Let A be a quadrable object in a category C.

The **exponential** of an object  $E \in \mathcal{C}$  by the object A is an object  $E^A \in \mathcal{C}$  equipped with a map  $\epsilon : E^A \times A \to E$  called the *evaluation* such that:

Let A be a quadrable object in a category C.

The **exponential** of an object  $E \in \mathcal{C}$  by the object A is an object  $E^A \in \mathcal{C}$  equipped with a map  $\epsilon : E^A \times A \to E$  called the *evaluation* such that:

▶ for every object  $X \in \mathcal{C}$  and every map  $u: X \times A \to E$ , there exists a unique map  $v: X \to E^A$  such that  $\epsilon(v \times A) = u$ .



Let A be a quadrable object in a category C.

The **exponential** of an object  $E \in \mathcal{C}$  by the object A is an object  $E^A \in \mathcal{C}$  equipped with a map  $\epsilon : E^A \times A \to E$  called the *evaluation* such that:

▶ for every object  $X \in \mathcal{C}$  and every map  $u: X \times A \to E$ , there exists a unique map  $v: X \to E^A$  such that  $\epsilon(v \times A) = u$ .



We write  $v = \lambda^A(u)$ .

Let A be a quadrable object in a category C.

Let A be a quadrable object in a category C.

The space of sections of an object  $E = (E, p) \in \mathcal{C}/A$  is an object  $\Pi_A(E) \in \mathcal{C}$  equipped with a map  $\epsilon : \Pi_A(E) \times A \to E$  called the evaluation such that:

Let A be a quadrable object in a category C.

The space of sections of an object  $E = (E, p) \in \mathcal{C}/A$  is an object  $\Pi_A(E) \in \mathcal{C}$  equipped with a map  $\epsilon : \Pi_A(E) \times A \to E$  called the evaluation such that:

 $ightharpoonup p\epsilon = p_2$ 

Let A be a quadrable object in a category C.

The space of sections of an object  $E = (E, p) \in \mathcal{C}/A$  is an object  $\Pi_A(E) \in \mathcal{C}$  equipped with a map  $\epsilon : \Pi_A(E) \times A \to E$  called the evaluation such that:

- $ightharpoonup pe p_e = p_2$
- ▶ for every object  $X \in \mathcal{C}$  and every map  $u: X \times A \to E$  in  $\mathcal{C}/A$  there exists a unique map  $v: X \to \Pi_A(E)$  such that  $\epsilon(v \times A) = u$ .



Let A be a quadrable object in a category C.

The space of sections of an object  $E = (E, p) \in \mathcal{C}/A$  is an object  $\Pi_A(E) \in \mathcal{C}$  equipped with a map  $\epsilon : \Pi_A(E) \times A \to E$  called the evaluation such that:

- $ightharpoonup pe p_e = p_2$
- ▶ for every object  $X \in \mathcal{C}$  and every map  $u: X \times A \to E$  in  $\mathcal{C}/A$  there exists a unique map  $v: X \to \Pi_A(E)$  such that  $\epsilon(v \times A) = u$ .



We write  $v = \lambda^{A}(u)$ .

## Products along a map

Let  $f: A \to B$  be a quadrable map in a category C.

The **product**  $\Pi_f(E)$  of  $E = (E, p) \in \mathcal{C}/A$  along  $f : A \to B$  is the space of sections of the map  $(E, fp) \to (A, f)$  in the category  $\mathcal{C}/B$ .



## Products along a map

Let  $f: A \to B$  be a quadrable map in a category C.

The **product**  $\Pi_f(E)$  of  $E = (E, p) \in \mathcal{C}/A$  along  $f : A \to B$  is the space of sections of the map  $(E, fp) \to (A, f)$  in the category  $\mathcal{C}/B$ .

$$\begin{bmatrix}
E & \Pi_f(E) \\
P & \downarrow \\
A & \xrightarrow{f} B
\end{bmatrix}$$

For every y : B we have

$$\Pi_f(E)(y) = \prod_{f(x)=y} E(x)$$

#### Definition

We say that a tribe  $\mathcal C$  is  $\pi\text{-}\mathbf{closed}$ , and that it is a  $\pi\text{-}\mathbf{tribe}$ , if every fibration  $E \to A$  has a product along any fibration  $f: A \to B$  and the structure map  $\Pi_f(E) \to B$  is a fibration,

#### Definition

We say that a tribe  $\mathcal C$  is  $\pi\text{-closed}$ , and that it is a  $\pi\text{-tribe}$ , if every fibration  $E \to A$  has a product along any fibration  $f: A \to B$  and the structure map  $\Pi_f(E) \to B$  is a fibration,

The functor

$$\Pi_f: \mathcal{C}(A) \to \mathcal{C}(B)$$

is right adjoint to the functor  $f^* : \mathcal{C}(B) \to \mathcal{C}(A)$ .

#### Definition

We say that a tribe  $\mathcal C$  is  $\pi\text{-closed}$ , and that it is a  $\pi\text{-tribe}$ , if every fibration  $E \to A$  has a product along any fibration  $f: A \to B$  and the structure map  $\Pi_f(E) \to B$  is a fibration,

The functor

$$\Pi_f: \mathcal{C}(A) \to \mathcal{C}(B)$$

is right adjoint to the functor  $f^* : \mathcal{C}(B) \to \mathcal{C}(A)$ .

If C is a  $\pi$ -tribe, then so is the tribe C(A) for every object  $A \in C$ .

## Examples of $\pi$ -tribes

### Examples of $\pi$ -tribes

- A cartesian closed category, where a fibration is a projection;
- A locally cartesian category is a Π-tribe in which every map is a fibration;
- The category of small groupoids **Grpd**, where a fibration is an iso-fibration (Hofmann, Streicher);
- ► The category of Kan complexes Kan, where a fibrations is a Kan fibration (Voevodsky, Streicher);

### Π-introduction rule

In a  $\Pi$ -tribe, we have the following  $\Pi$ -introduction rule:

### Π-introduction rule

In a  $\Pi$ -tribe, we have the following  $\Pi$ -introduction rule:

$$\frac{x:A\vdash E(x):\mathit{Type}}{\vdash \prod_{x\cdot A} E(x):\mathit{Type}}.$$

### Π-introduction rule

In a  $\Pi$ -tribe, we have the following  $\Pi$ -introduction rule:

$$\frac{x:A\vdash E(x):\mathit{Type}}{\vdash \prod_{x:A} E(x):\mathit{Type}.}$$

And a rule for the formation of  $\lambda$ -terms:

$$\frac{x:A\vdash t(x):E(x)}{\vdash (\lambda x)t(x):\prod_{x:A}E(x)}$$

# Anodyne maps

## Anodyne maps

### Definition

We say that a map  $u: A \to B$  in a tribe C is **anodyne** if it has the left lifting property with respect to every fibration  $f: X \to Y$ .

## Anodyne maps

#### Definition

We say that a map  $u: A \to B$  in a tribe  $\mathcal{C}$  is **anodyne** if it has the left lifting property with respect to every fibration  $f: X \to Y$ .

This means that every commutative square

$$\begin{array}{c|c}
A & \xrightarrow{a} & X \\
\downarrow u & & \downarrow f \\
B & \xrightarrow{b} & Y
\end{array}$$

has a diagonal filler  $d: B \rightarrow X$  ( du = a and fd = b).

## Homotopical tribes

## Homotopical tribes

### Definition

We say that a tribe  $\mathcal C$  is **homotopical**, or a **h-tribe**, if the following two conditions are satisfied

## Homotopical tribes

### Definition

We say that a tribe  $\mathcal C$  is **homotopical**, or a **h-tribe**, if the following two conditions are satisfied

• every map  $f: A \rightarrow B$  admits a factorization f = pu with u an anodyne map and p a fibration;



## Homotopical tribes

### Definition

We say that a tribe  $\mathcal C$  is **homotopical**, or a **h-tribe**, if the following two conditions are satisfied

• every map  $f: A \rightarrow B$  admits a factorization f = pu with u an anodyne map and p a fibration;



the base change of an anodyne map along a fibration is anodyne.

## Homotopical tribes

### Definition

We say that a tribe  $\mathcal C$  is **homotopical**, or a **h-tribe**, if the following two conditions are satisfied

• every map  $f: A \rightarrow B$  admits a factorization f = pu with u an anodyne map and p a fibration;



the base change of an anodyne map along a fibration is anodyne.

## Homotopical tribes

### Definition

We say that a tribe C is **homotopical**, or a **h-tribe**, if the following two conditions are satisfied

• every map  $f: A \to B$  admits a factorization f = pu with u an anodyne map and p a fibration;



the base change of an anodyne map along a fibration is anodyne.

If  $\mathcal C$  is a h-tribe, then so is the tribe  $\mathcal C(A)$  for every object  $A \in \mathcal C$ .

► The category of groupoids **Grpd**, where a functor is anodyne if it is a monic equivalence (Hofmann, Streicher);

- ► The category of groupoids **Grpd**, where a functor is anodyne if it is a monic equivalence (Hofmann, Streicher);
- ► The category of Kan complexes Kan, where a map is anodyne if it is a monic homotopy equivalence (Streicher, Warren, Awodey, Voevodsky);

- ► The category of groupoids **Grpd**, where a functor is anodyne if it is a monic equivalence (Hofmann, Streicher);
- The category of Kan complexes Kan, where a map is anodyne
  if it is a monic homotopy equivalence (Streicher, Warren,
  Awodey, Voevodsky);
- ► The syntaxic category of Martin-Löf type theory, where a fibration is a map isomorphic to a display map (Gambino-Garner).

# Path object

## Path object

A **path object** for an object  $A \in \mathcal{C}$  is a factorisation of the diagonal  $\Delta: A \to A \times A$  as an anodyne map  $r: A \to PA$  followed by a fibration  $(s,t): PA \to A \times A$ ,



In Martin-Löf type theory, there is a type constructor which associates to every type  $\cal A$  a dependant type

$$x:A,y:A \vdash Id_A(x,y):Type$$

called the **identity type** of *A*,

In Martin-Löf type theory, there is a type constructor which associates to every type  $\cal A$  a dependant type

$$x:A,y:A \vdash Id_A(x,y):Type$$

called the **identity type** of A,

A term  $p: Id_A(x, y)$  is regarded as a **proof** that x = y.

In Martin-Löf type theory, there is a type constructor which associates to every type  $\cal A$  a dependant type

$$x: A, y: A \vdash Id_A(x, y): Type$$

called the **identity type** of A,

A term  $p: Id_A(x, y)$  is regarded as a **proof** that x = y.

There is a term

$$x:A \vdash r(x): Id_A(x,x)$$

called the **reflexivity term**. It is a proof that x = x.

## The *J*-rule

### The *J*-rule

There is an operation J which takes commutative square



with p a fibration,

### The *J*-rule

There is an operation J which takes commutative square

$$\begin{array}{ccc}
A & \xrightarrow{u} & E \\
\downarrow r & & \downarrow p \\
Id_A & & & Id_A
\end{array}$$

with p a fibration, to a diagonal filler d = J(u, p)



It shows that the reflexivity term  $r: A \rightarrow Id_A$  is anodyne!

Awodey and Warren:

### Awodey and Warren:

The identity type

$$Id_{A} = \sum_{(x,y):A\times A} Id_{A}(x,y)$$

is a path object for A.

### Awodey and Warren:

The identity type

$$Id_{A} = \sum_{(x,y):A\times A} Id_{A}(x,y)$$

is a path object for A.



# Mapping path space

## Mapping path space

The **mapping path space** P(f) of a map  $f: A \rightarrow B$  is defined by the pullback square



## Mapping path space

The **mapping path space** P(f) of a map  $f: A \rightarrow B$  is defined by the pullback square



This gives a factorization  $f = pu : A \rightarrow P(f) \rightarrow B$  with  $u = \langle 1_A, rf \rangle$  an anodyne map and  $p = tp_2$  a fibration.

The **homotopy fiber** of a map  $f: A \to B$  at a point y: B is the fiber of the fibration  $p: P(f) \to B$  at the same point,

$$fib_f(y) = \sum_{x:A} Id_A(f(x), y).$$

Let C be a h-tribe.

Let C be a h-tribe.

A **homotopy**  $h: f \leadsto g$  between two maps  $f, g: A \to B$  in C

Let C be a h-tribe.

A **homotopy**  $h: f \leadsto g$  between two maps  $f, g: A \to B$  in  $\mathcal C$  is a map  $h: A \to PB$ 



such that sh = f and th = g.

Let C be a h-tribe.

A **homotopy**  $h: f \leadsto g$  between two maps  $f, g: A \to B$  in  $\mathcal C$  is a map  $h: A \to PB$ 



such that sh = f and th = g.

In type theory, h is regarded as a **proof** that f = g,

$$x : A \vdash h(x) : Id_B(f(x), g(x)).$$

Let C be a h-tribe.

Let C be a h-tribe.

#### Theorem

The homotopy relation  $f \sim g$  is a congruence on the arrows of C.

Let C be a h-tribe.

#### Theorem

The homotopy relation  $f \sim g$  is a congruence on the arrows of C.

The **homotopy category** Ho(C) is the quotient category  $C/\sim$ .

Let C be a h-tribe.

#### Theorem

The homotopy relation  $f \sim g$  is a congruence on the arrows of C.

The **homotopy category** Ho(C) is the quotient category  $C/\sim$ .

A map  $f: X \to Y$  in  $\mathcal{C}$  is called a **homotopy equivalence** if it is invertible in  $Ho(\mathcal{C})$ .

Let C be a h-tribe.

#### **Theorem**

The homotopy relation  $f \sim g$  is a congruence on the arrows of C.

The **homotopy category** Ho(C) is the quotient category  $C/\sim$ .

A map  $f: X \to Y$  in C is called a **homotopy equivalence** if it is invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

Let C be a h-tribe.

#### **Theorem**

The homotopy relation  $f \sim g$  is a congruence on the arrows of C.

The **homotopy category** Ho(C) is the quotient category  $C/\sim$ .

A map  $f: X \to Y$  in C is called a **homotopy equivalence** if it is invertible in Ho(C).

Every anodyne map is a homotopy equivalence.

An object X is **contractible** if the map  $X \to \star$  is a homotopy equivalence.

## Local homotopy categories

## Local homotopy categories

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}/A$  is called a *weak equivalence* if the map  $f:E\to F$  is a homotopy equivalence in  $\mathcal{C}$ .

## Local homotopy categories

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}/A$  is called a *weak equivalence* if the map  $f:E\to F$  is a homotopy equivalence in  $\mathcal{C}$ .

The **local homotopy category**  $Ho(\mathcal{C}/A)$  is defined to be the category of fraction

$$Ho(\mathcal{C}/A) = W_A^{-1}(\mathcal{C}/A)$$

where  $W_A$  is the class of weak equivalences in C/A.

### Local homotopy categories

A map  $f:(E,p)\to (F,q)$  in  $\mathcal{C}/A$  is called a *weak equivalence* if the map  $f:E\to F$  is a homotopy equivalence in  $\mathcal{C}$ .

The **local homotopy category**  $Ho(\mathcal{C}/A)$  is defined to be the category of fraction

$$Ho(\mathcal{C}/A) = W_A^{-1}(\mathcal{C}/A)$$

where  $W_A$  is the class of weak equivalences in C/A.

The inclusion  $C(A) \to C/A$  induces an equivalence of categories:

$$Ho(\mathcal{C}(A)) = Ho(\mathcal{C}/A)$$

## Homotopy pullback

A square



is a homotopy pullback if the canonical map  $A \to B \times_D^h C$  is a homotopy equivalence, where  $B \times_D^h C = (f \times g)^*(PD)$ 

$$B \times_{D}^{h} C \longrightarrow D$$

$$\downarrow \qquad \qquad \downarrow$$

$$B \times C \xrightarrow{f \times g} D \times D$$

A map  $u: A \rightarrow B$  is homotopy monic if the square



is homotopy pullback.

A map  $u: A \rightarrow B$  is homotopy monic if the square



is homotopy pullback.

A map  $u: A \rightarrow B$  is homotopy monic if the square



is homotopy pullback.

#### Definition

An object  $A \in \mathcal{C}$  is a *h-proposition* if the map  $A \to \star$  is homotopy monic.

A map  $u: A \rightarrow B$  is homotopy monic if the square



is homotopy pullback.

#### Definition

An object  $A \in \mathcal{C}$  is a *h-proposition* if the map  $A \to \star$  is homotopy monic.

An object A is a h-proposition if and only if the diagonal  $A \to A \times A$  is a homotopy equivalence.

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $C(A \times A)$ .

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $C(A \times A)$ .

An object A is

▶ a 0-**type** if P(A) is a h-proposition in  $C(A \times A)$ ;

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $\mathcal{C}(A \times A)$ .

An object A is

- ▶ a 0-**type** if P(A) is a h-proposition in  $C(A \times A)$ ;
- ▶ a (n+1)-**type** if P(A) is a n-type in  $C(A \times A)$ .

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $\mathcal{C}(A \times A)$ .

An object A is

- ▶ a 0-**type** if P(A) is a h-proposition in  $C(A \times A)$ ;
- ▶ a (n+1)-**type** if P(A) is a n-type in  $C(A \times A)$ .

A 0-type is also called a *h-set*.

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $\mathcal{C}(A \times A)$ .

An object A is

- ▶ a 0-**type** if P(A) is a h-proposition in  $C(A \times A)$ ;
- ▶ a (n+1)-**type** if P(A) is a n-type in  $C(A \times A)$ .

A 0-type is also called a *h-set*.

An object A is a h-set if the diagonal  $A \rightarrow A \times A$  is homotopy monic.

The fibration  $\langle s, t \rangle : PA \to A \times A$  defines an object P(A) of the local tribe  $\mathcal{C}(A \times A)$ .

An object A is

- ▶ a 0-**type** if P(A) is a h-proposition in  $C(A \times A)$ ;
- ▶ a (n+1)-**type** if P(A) is a n-type in  $C(A \times A)$ .

A 0-type is also called a *h-set*.

An object A is a h-set if the diagonal  $A \rightarrow A \times A$  is homotopy monic.

## Homotopy initial objects

Let C be a h-tribe.

## Homotopy initial objects

Let C be a h-tribe.

An object  $\bot \in \mathcal{C}$  is **homotopy initial** if every fibration  $p : E \to \bot$  has a section  $\sigma : \bot \to E$ ,

$$E_{p\downarrow} \int \sigma$$

## Homotopy initial objects

Let C be a h-tribe.

An object  $\bot \in \mathcal{C}$  is **homotopy initial** if every fibration  $p : E \to \bot$  has a section  $\sigma : \bot \to E$ ,



A homotopy initial object remains initial in the homotopy category Ho(C).

An object  $A \sqcup B$  equipped with a pair of maps  $i, j : A, B \to A \sqcup B$ 

An object  $A \sqcup B$  equipped with a pair of maps  $i, j : A, B \to A \sqcup B$  such that for every fibration  $p : E \to A \sqcup B$  and every pair of maps  $f, g : A, B \to E$  such that pf = i and pg = j,



An object  $A \sqcup B$  equipped with a pair of maps  $i, j : A, B \to A \sqcup B$  such that for every fibration  $p : E \to A \sqcup B$  and every pair of maps  $f, g : A, B \to E$  such that pf = i and pg = j,



there exists a section  $\sigma: A \sqcup B \to E$  such that  $\sigma i = f$  and  $\sigma j = g$ .

An object  $A \sqcup B$  equipped with a pair of maps  $i, j : A, B \to A \sqcup B$  such that for every fibration  $p : E \to A \sqcup B$  and every pair of maps  $f, g : A, B \to E$  such that pf = i and pg = j,



there exists a section  $\sigma:A\sqcup B\to E$  such that  $\sigma i=f$  and  $\sigma j=g$ . A homotopy coproduct remains a coproduct in the homotopy

A homotopy coproduct remains a coproduct in the homotopy category  $Ho(\mathcal{C})$ .

It is a homotopy initial object  $(\mathbb{N}, s, 0)$  in the category of triples (X, f, a), for  $X \in \mathcal{C}$ ,  $f : X \to X$  and a : X.

It is a homotopy initial object  $(\mathbb{N}, s, 0)$  in the category of triples (X, f, a), for  $X \in \mathcal{C}$ ,  $f: X \to X$  and a: X.

For every fibration  $p: X \to \mathbb{N}$ , such that pf = sp and p(a) = 0



It is a homotopy initial object  $(\mathbb{N}, s, 0)$  in the category of triples (X, f, a), for  $X \in \mathcal{C}$ ,  $f : X \to X$  and a : X.

For every fibration  $p:X\to\mathbb{N}$ , such that pf=sp and p(a)=0



there exists a section  $\sigma: \mathbb{N} \to X$  such that  $\sigma s = f \sigma$  and  $\sigma(0) = a$ .

It is a homotopy initial object  $(\mathbb{N}, s, 0)$  in the category of triples (X, f, a), for  $X \in \mathcal{C}$ ,  $f : X \to X$  and a : X.

For every fibration  $p: X \to \mathbb{N}$ , such that pf = sp and p(a) = 0



there exists a section  $\sigma: \mathbb{N} \to X$  such that  $\sigma s = f \sigma$  and  $\sigma(0) = a$ .

A homotopy natural number object  $(\mathbb{N}, s, 0)$  is not necessarily a natural number object in the homotopy category  $Ho(\mathcal{C})$ .

#### Definition

We say that a tribe  $\mathcal{C}=(\mathcal{C},\mathcal{F})$  is a **ML-tribe** if the following conditions are satisfied

ightharpoonup C is a Π-tribe and a h-tribe;

#### Definition

We say that a tribe  $C = (C, \mathcal{F})$  is a **ML-tribe** if the following conditions are satisfied

- $\triangleright$  C is a  $\Pi$ -tribe and a h-tribe;
- (extensionality) the product functor  $\Pi_f : \mathcal{C}(A) \to \mathcal{C}(B)$  preserves the homotopy relation for every fibration  $f : A \to B$ .

#### Definition

We say that a tribe  $\mathcal{C}=(\mathcal{C},\mathcal{F})$  is a **ML-tribe** if the following conditions are satisfied

- $\triangleright$  C is a  $\Pi$ -tribe and a h-tribe;
- (extensionality) the product functor  $\Pi_f : \mathcal{C}(A) \to \mathcal{C}(B)$  preserves the homotopy relation for every fibration  $f : A \to B$ .

If C is a ML-tribe, then so is the tribe C(A) for every  $A \in C$ .

## Extensionality

The axiom of extensionality implies that the product functor

$$\Pi_A: \mathcal{C}(A) \to \mathcal{C}$$

preserves the homotopy relation.

## Extensionality

The axiom of extensionality implies that the product functor

$$\Pi_A:\mathcal{C}(A)\to\mathcal{C}$$

preserves the homotopy relation.

It follows that there is a map

$$\prod_{x:A} Id_B(f(x),g(x)) \to Id_{[A,B]}(f,g)$$

defined for any pair of maps  $f, g : A \rightarrow B$ .

#### Theorem

(**Hofmann and Streicher**) The category of small groupoids, where a fibration is a Grothendieck fibration.

#### **Theorem**

(Hofmann and Streicher) The category of small groupoids, where a fibration is a Grothendieck fibration.

#### **Theorem**

(Awodey-Warren-Voevodsky) The category of Kan complexes, where a fibration is a Kan fibration.

#### **Theorem**

(Hofmann and Streicher) The category of small groupoids, where a fibration is a Grothendieck fibration.

#### **Theorem**

(Awodey-Warren-Voevodsky) The category of Kan complexes, where a fibration is a Kan fibration.

#### **Theorem**

(Gambino-Garner) The syntaxic category of Martin-Löf type theory, where a fibration is a map isomorphic to a display map.

### Decidability

A set S is *decidable* if the relations  $x \in S$  and the equality relation x = y for  $x, y \in S$  can be decided recursively.

A set S is *decidable* if the relations  $x \in S$  and the equality relation x = y for  $x, y \in S$  can be decided recursively.

► The set of natural numbers N is decidable;

A set S is *decidable* if the relations  $x \in S$  and the equality relation x = y for  $x, y \in S$  can be decided recursively.

- ▶ The set of natural numbers N is decidable;
- Not every finitely presented group is decidable (Post).

A set S is *decidable* if the relations  $x \in S$  and the equality relation x = y for  $x, y \in S$  can be decided recursively.

- ► The set of natural numbers N is decidable;
- Not every finitely presented group is decidable (Post).

**Martin-Löf's theorem** :The relations  $\vdash t : A$  and  $\vdash s = t : A$  are decidable in type theory with the axiom of extensionality and with natural numbers.

A set S is *decidable* if the relations  $x \in S$  and the equality relation x = y for  $x, y \in S$  can be decided recursively.

- ▶ The set of natural numbers N is decidable;
- Not every finitely presented group is decidable (Post).

**Martin-Löf's theorem** :The relations  $\vdash t : A$  and  $\vdash s = t : A$  are decidable in type theory with the axiom of extensionality and with natural numbers.

## Corollary

The syntaxic category of Martin-Löf type theory with homotopy natural numbers is decidable

## Elementary topos

Let  $\mathcal E$  be a category with finite limits

Recall that a monomorphism  $t: 1 \to \Omega$  in  $\mathcal E$  is said to be *universal* if for every monomorphism  $S \to A$  there exists a unique map  $f: A \to \Omega$ , such that  $f^{-1}(t) = S$ ,



The pair  $(\Omega, t)$  is called a *sub-object classifier*.

Lawvere and Tierney:

### Definition

An elementary topos is a locally cartesian category with a sub-object classifier  $\Omega$ .

If C = (C, F) is a tribe, we shall say that a class of maps  $F' \subseteq F$  is a class of **small fibrations** if the pair (C, F') is a tribe.

If  $C = (C, \mathcal{F})$  is a tribe, we shall say that a class of maps  $\mathcal{F}' \subseteq \mathcal{F}$  is a class of **small fibrations** if the pair  $(C, \mathcal{F}')$  is a tribe.

A small fibration  $q: U' \to U$  is **universal** if for every small fibration  $p: E \to A$  there exists a cartesian square:



If  $C = (C, \mathcal{F})$  is a tribe, we shall say that a class of maps  $\mathcal{F}' \subseteq \mathcal{F}$  is a class of **small fibrations** if the pair  $(C, \mathcal{F}')$  is a tribe.

A small fibration  $q: U' \to U$  is **universal** if for every small fibration  $p: E \to A$  there exists a cartesian square:



A **universe** is the codomain of a universal small fibration  $U' \to U$ .

If  $C = (C, \mathcal{F})$  is a tribe, we shall say that a class of maps  $\mathcal{F}' \subseteq \mathcal{F}$  is a class of **small fibrations** if the pair  $(C, \mathcal{F}')$  is a tribe.

A small fibration  $q: U' \to U$  is **universal** if for every small fibration  $p: E \to A$  there exists a cartesian square:



A **universe** is the codomain of a universal small fibration  $U' \to U$ .

A small type E is a term of type U.

Martin-Löf axiom: There is a universe U.

If  $C = (C, \mathcal{F})$  is a tribe, we shall say that a class of maps  $\mathcal{F}' \subseteq \mathcal{F}$  is a class of **small fibrations** if the pair  $(C, \mathcal{F}')$  is a tribe.

A small fibration  $q: U' \to U$  is **universal** if for every small fibration  $p: E \to A$  there exists a cartesian square:



A **universe** is the codomain of a universal small fibration  $U' \to U$ .

A small type E is a term of type U.

Martin-Löf axiom: There is a universe U.

Let  $\mathcal C$  be a ML-tribe.

Let C be a ML-tribe.

### Definition

A presheaf  $F: \mathcal{C}^{op} \to Set$  homotopical if it respects the homotopy relation:  $f \sim g \Rightarrow F(f) = F(g)$ .

Let C be a ML-tribe.

### Definition

A presheaf  $F: \mathcal{C}^{op} \to Set$  homotopical if it respects the homotopy relation:  $f \sim g \Rightarrow F(f) = F(g)$ .

A homotopical presheaf is the same thing as a functor  $F: Ho(\mathcal{C})^{op} \to Set$ .

Let C be a ML-tribe.

### Definition

A presheaf  $F: \mathcal{C}^{op} \to Set$  homotopical if it respects the homotopy relation:  $f \sim g \Rightarrow F(f) = F(g)$ .

A homotopical presheaf is the same thing as a functor  $F: Ho(\mathcal{C})^{op} \to Set$ .

A homotopical presheaf F is **representable** if the functor  $F: Ho(\mathcal{C})^{op} \to \mathbf{Set}$  is representable.

## IsContr(X)

If  $E \in \mathcal{C}$ , then the presheaf  $F : \mathcal{C}^{op} \to \mathbf{Set}$  defined by putting

$$F(A) = egin{cases} 1, & ext{if } E_A ext{ is contractible in } \mathcal{C}(A) \ \emptyset & ext{otherwise} \end{cases}$$

is homotopical.

# IsContr(X)

If  $E \in \mathcal{C}$ , then the presheaf  $F : \mathcal{C}^{op} \to \mathbf{Set}$  defined by putting

$$F(A) = \begin{cases} 1, & \text{if } E_A \text{ is contractible in } C(A) \\ \emptyset & \text{otherwise} \end{cases}$$

is homotopical.

It is represented by the h-proposition

$$IsContr(E) =_{\text{def}} \sum_{x:E} \prod_{y:E} Id_E(x,y)$$

# IsContr(X)

If  $E \in \mathcal{C}$ , then the presheaf  $F : \mathcal{C}^{op} \to \mathbf{Set}$  defined by putting

$$F(A) = egin{cases} 1, & ext{if } E_A ext{ is contractible in } \mathcal{C}(A) \ \emptyset & ext{otherwise} \end{cases}$$

is homotopical.

It is represented by the h-proposition

$$IsContr(E) =_{\text{def}} \sum_{x:E} \prod_{y:E} Id_E(x,y)$$

Compare with

$$(\exists x \in E) \ (\forall y \in E) \ x = y$$

# IsEq(f)

If  $f:X\to Y$  is an arbitrary map, then the presheaf  $F:\mathcal{C}^{op}\to \mathbf{Set}$  defined by putting

$$F(A) = \begin{cases} 1, & \text{if } f_A : X_A \to X_A \text{ is an equivalence} \\ \emptyset & \text{otherwise} \end{cases}$$

is homotopical.

# IsEq(f)

If  $f:X\to Y$  is an arbitrary map, then the presheaf  $F:\mathcal{C}^{op}\to \mathbf{Set}$  defined by putting

$$F(A) = \begin{cases} 1, & \text{if } f_A : X_A \to X_A \text{ is an equivalence} \\ \emptyset & \text{otherwise} \end{cases}$$

is homotopical.

It is represented by the h-proposition

$$IsEq(f) =_{\text{def}} \prod_{y:Y} IsCont(fib_f(y)),$$

where  $fib_f(y)$  is the homotopy fiber of f at y : Y.

Eq(X, Y)

If  $X, Y \in \mathcal{C}$ , let us put

$$Eq(X, Y) =_{\text{def}} \sum_{f: X \to Y} IsEq(f)$$

If  $X, Y \in \mathcal{C}$ , let us put

$$Eq(X,Y) =_{\text{def}} \sum_{f:X\to Y} IsEq(f)$$

For every object  $A \in \mathcal{C}$ , there is a bijection between the maps

$$A \rightarrow Eq(X, Y)$$

in  $Ho(\mathcal{C})$  and the isomorphism  $X_A \simeq Y_A$  in  $Ho(\mathcal{C}(A))$ 

# $Eq_A(E)$

# $Eq_A(E)$

For every fibration  $p: E \rightarrow A$  let us put

$$Eq_A(E)(x,y) = \sum_{x:A} \sum_{y:A} Eq(E(x), E(y))$$

# $Eq_A(E)$

For every fibration  $p: E \rightarrow A$  let us put

$$Eq_{A}(E)(x,y) = \sum_{x:A} \sum_{y:A} Eq(E(x), E(y))$$

The identity  $1_{E(x)}$  is represented by a term

$$x: A \vdash u(x): Eq(E(x), E(x))$$

which defines the unit map  $u: A \to Eq_A(E)$ ,

## Univalent fibration

## Voevodsky:

### Definition

A fibration  $E \to A$  is **univalent** if the unit map  $u: A \to Eq_A(E)$  is a homotopy equivalence.

### Univalent fibration

### Voevodsky:

### Definition

A fibration  $E \to A$  is **univalent** if the unit map  $u: A \to Eq_A(E)$  is a homotopy equivalence.

In which case the fibration  $Eq_A(E) \to A \times A$  is equivalent to the fibration  $PA \to A \times A$ .

## Univalent fibration

### Voevodsky:

### **Definition**

A fibration  $E \to A$  is **univalent** if the unit map  $u : A \to Eq_A(E)$  is a homotopy equivalence.

In which case the fibration  $Eq_A(E) \to A \times A$  is equivalent to the fibration  $PA \to A \times A$ .



## Uncompressible fibration

To compress a Kan fibration  $p: X \to A$  is to find a homotopy pullback square



in which f is not homotopy monic.

## Uncompressible fibration

To *compress* a Kan fibration  $p: X \to A$  is to find a homotopy pullback square



in which f is not homotopy monic.

A Kan fibration is uncompressible if and only if it is univalent.

## Uncompressible fibration

To *compress* a Kan fibration  $p: X \rightarrow A$  is to find a homotopy pullback square



in which f is not homotopy monic.

A Kan fibration is uncompressible if and only if it is univalent.

Every Kan fibration  $X \to A$  is the pullback of an uncompressible fibration  $X' \to A'$  along a homotopy surjection  $A \to A'$ .

## Voevodsky tribes

Voevodsky: There is a universal small Kan fibration  $U' \to U$  which is univalent.

## Voevodsky tribes

Voevodsky: There is a universal small Kan fibration  $U' \to U$  which is univalent.

### Definition

A **V-tribe** is a ML-tribe equipped with a small fibration  $U' \to U$  which is universal and univalent.

## Voevodsky tribes

Voevodsky: There is a universal small Kan fibration  $U' \to U$  which is univalent.

### Definition

A **V-tribe** is a ML-tribe equipped with a small fibration  $U' \to U$  which is universal and univalent.

Voevodsky's conjecture : The relations  $\vdash t : A$  and  $\vdash s = t : A$  are decidable in V-type theory.

# What is an elementary higher topos?

| Grothendieck topos | Elementary topos |
|--------------------|------------------|
| Higher topos       | EH-topos?        |

Let  ${\mathcal E}$  be a category with terminal object  $\top$  and initial object  $\bot$ .

Let  $\mathcal E$  be a category with terminal object  $\top$  and initial object  $\bot$ .

#### Definition

A generalized model structure on  $\mathcal E$  is a triple  $(\mathcal C,\mathcal W,\mathcal F)$  of classes maps in  $\mathcal E$  such that

- W satisfies 3-for-2;
- ▶ the pairs  $(C \cap W, F)$  and  $(C, W \cap F)$  are weak factorization systems;
- lacktriangle the maps in  ${\mathcal F}$  are quadrable and maps in  ${\mathcal C}$  is co-quadrable;

Let  $\mathcal E$  be a category with terminal object  $\top$  and initial object  $\bot$ .

#### Definition

A generalized model structure on  $\mathcal E$  is a triple  $(\mathcal C,\mathcal W,\mathcal F)$  of classes maps in  $\mathcal E$  such that

- W satisfies 3-for-2;
- ▶ the pairs  $(C \cap W, F)$  and  $(C, W \cap F)$  are weak factorization systems;
- lacktriangle the maps in  ${\mathcal F}$  are quadrable and maps in  ${\mathcal C}$  is co-quadrable;

A generalized model category is the category  $\mathcal{E}$  equipped with a generalised model structure  $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ .

Let  $\mathcal E$  be a category with terminal object  $\top$  and initial object  $\bot$ .

#### Definition

A generalized model structure on  $\mathcal E$  is a triple  $(\mathcal C,\mathcal W,\mathcal F)$  of classes maps in  $\mathcal E$  such that

- W satisfies 3-for-2;
- ▶ the pairs  $(C \cap W, F)$  and  $(C, W \cap F)$  are weak factorization systems;
- lacktriangle the maps in  ${\mathcal F}$  are quadrable and maps in  ${\mathcal C}$  is co-quadrable;

A generalized model category is the category  $\mathcal{E}$  equipped with a generalised model structure  $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ .

Let  $\mathcal E$  be a category with terminal object  $\top$  and initial object  $\bot$ .

#### Definition

A generalized model structure on  $\mathcal E$  is a triple  $(\mathcal C,\mathcal W,\mathcal F)$  of classes maps in  $\mathcal E$  such that

- W satisfies 3-for-2;
- ▶ the pairs  $(C \cap W, F)$  and  $(C, W \cap F)$  are weak factorization systems;
- lacktriangle the maps in  ${\mathcal F}$  are quadrable and maps in  ${\mathcal C}$  is co-quadrable;

A generalized model category is the category  $\mathcal{E}$  equipped with a generalised model structure  $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ .

A map in  $\mathcal C$  is called a *cofibration*, a map in  $\mathcal W$  a *weak equivalence* and a map in  $\mathcal F$  a *fibration*.

Let  $\mathcal E$  be a category with terminal object  $\top$  and initial object  $\bot$ .

#### **Definition**

A generalized model structure on  $\mathcal E$  is a triple  $(\mathcal C,\mathcal W,\mathcal F)$  of classes maps in  $\mathcal E$  such that

- W satisfies 3-for-2;
- ▶ the pairs  $(C \cap W, F)$  and  $(C, W \cap F)$  are weak factorization systems;
- **ightharpoonup** the maps in  $\mathcal F$  are quadrable and maps in  $\mathcal C$  is co-quadrable;

A generalized model category is the category  $\mathcal{E}$  equipped with a generalised model structure  $(\mathcal{C}, \mathcal{W}, \mathcal{F})$ .

A map in  $\mathcal C$  is called a *cofibration*, a map in  $\mathcal W$  a *weak equivalence* and a map in  $\mathcal F$  a *fibration*.

An object A is *cofibrant* if the map  $\bot \to A$  is a cofibration, an object X is *fibrant* if the map  $X \to \top$  is a fibration

A generalized model structure is *right proper* if the base change of a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is *right proper* if the base change of a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is **excellent** if it is right proper and the base change of a cofibration along a fibration is a cofibration,

A generalized model structure is *right proper* if the base change of a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is **excellent** if it is right proper and the base change of a cofibration along a fibration is a cofibration,

A generalized model structure is  $\pi$ -closed if the product of a fibration along a fibration exists and is a fibration.

A generalized model structure is *right proper* if the base change of a weak equivalence along a fibration is a weak equivalence.

A generalized model structure is **excellent** if it is right proper and the base change of a cofibration along a fibration is a cofibration,

A generalized model structure is  $\pi$ -closed if the product of a fibration along a fibration exists and is a fibration.

A generalized model structure is **smooth** if it is excellent,  $\pi$ -closed and every object is cofibrant.

A first rough definition:

A first rough definition:

An **EH-topos** is a smooth generalised model category  $\mathcal{E}$  equipped a univalent universal (small) fibration  $U' \to U$ .

A first rough definition:

An **EH-topos** is a smooth generalised model category  $\mathcal{E}$  equipped a univalent universal (small) fibration  $U' \to U$ .

Critic 1: The properties of the class of small fibrations should not be left in the dark. We may need a hierarchy of universes

 $U_0:U_1:U_2:\cdots$ 

A first rough definition:

An **EH-topos** is a smooth generalised model category  $\mathcal{E}$  equipped a univalent universal (small) fibration  $U' \to U$ .

Critic 1: The properties of the class of small fibrations should not be left in the dark. We may need a hierarchy of universes  $U_0: U_1: U_2: \cdots$ .

Critic 2: The definition should include existence of a (homotopy, strict ?) natural number object  $\mathbb{N}$ . We may want  $\mathbb{N}$  to be fibrant.

A first rough definition:

An **EH-topos** is a smooth generalised model category  $\mathcal{E}$  equipped a univalent universal (small) fibration  $U' \to U$ .

Critic 1: The properties of the class of small fibrations should not be left in the dark. We may need a hierarchy of universes  $U_0: U_1: U_2: \cdots$ .

Critic 2: The definition should include existence of a (homotopy, strict ?) natural number object  $\mathbb{N}$ . We may want  $\mathbb{N}$  to be fibrant.

Critic 3: We may need to suppose that every fibration factors as a homotopy surjection followed by a fibrant monomorphism.

Georg Cantor:

Georg Cantor: "The essence of mathematics lies in its freedom."

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell:

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell: "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true"

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell: "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true"

Godfrey H. Hardy

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell: "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true"

Godfrey H. Hardy "Beauty is the first test; there is no permanent place in the world for ugly mathematics"

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell: "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true"

Godfrey H. Hardy "Beauty is the first test; there is no permanent place in the world for ugly mathematics"

John von Neumann:

Georg Cantor: "The essence of mathematics lies in its freedom."

Bertrand Russell: "Mathematics is the subject in which we never know what we are talking about, nor whether what we are saying is true"

Godfrey H. Hardy "Beauty is the first test; there is no permanent place in the world for ugly mathematics"

John von Neumann: "In mathematics you don't understand things. You just get used to them"

THANK YOU!