<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT Research Digest, May 2009</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">For Immediate Release</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">5/1/2009</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Contact: Elizabeth A. Thomson, MIT News Office</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">E: <a href="mailto:thomson@mit.edu">thomson@mit.edu</a>, T: 617-258-5402</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A monthly tip-sheet for journalists of recent research advances</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">at the Massachusetts Institute of Technology.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Latest research news: <a href="http://web.mit.edu/newsoffice/research.html">http://web.mit.edu/newsoffice/research.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">RSS -- research feed: <a href="http://web.mit.edu/newsoffice/mitresearch-rss.xml">http://web.mit.edu/newsoffice/mitresearch-rss.xml</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IN THIS ISSUE: Dialect Detectives * Blood Pressure Sensor * Cell Evolution * Novel Needle * Insights Into Perception * Virus-Built Battery * Microbes & Drugs * Important Synthesis * Brain Waves * Nanopatterning * Cooperative Behavior * Making Picky Proteins * Cells’ Inner Workings</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">DIALECT DETECTIVES</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A law enforcement agency intercepts an international phone call alerting a suspected drug dealer to a new shipment. While the translator listening to the message is confident the caller's Spanish carries a South American accent, he cannot pinpoint a more specific region for agents to put under surveillance. But technology under development by Pedro Torres-Carrasquillo and his colleagues at MIT’s Lincoln Laboratory may lead to a dialect identification system that compensates for a translator's inexperience with multiple variants of a spoken language. Language identification systems that can recognize as many as 29 languages from written text are already marketed, and systems that can identify a spoken language from a prescribed range of choices also exist. So far, however, no system that automatically discriminates one spoken dialect from another is available. "We are not looking for the types of data linguists deal with - larger units such as phonemes and words," Torres-Carrasquillo says. "We're looking at the statistical distributions of basic frequency spectra of small pieces of sounds."</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/speech-processing-0416.html">http://web.mit.edu/newsoffice/2009/speech-processing-0416.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">BLOOD PRESSURE SENSOR</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">High blood pressure is a common risk factor for heart attacks, strokes and aneurysms, so diagnosing and monitoring it are critically important. However, getting reliable blood pressure readings is not always easy. Visits to the doctor's office can provoke anxiety that distorts blood pressure readings, and even when accurate, such visits provide only one-time snapshots of the patient's condition. To overcome these obstacles, MIT engineers have built a wearable blood pressure sensor that can provide continuous, 24-hour monitoring. Blood pressure can change from minute to minute, so continuous monitoring offers a much broader picture of cardiovascular health. The new monitor, which loops around the wrist and the index finger, is just as accurate as traditional cuff devices but much less cumbersome, allowing it to be worn for hours or days at a time. “The human body is so complex, but the cuff gives only snapshot data,” says Harry Asada, an MIT mechanical engineer who led the development of the new monitor. “If you get signals all of the time you can see the trends and capture the physical condition quite well.” Such devices could be used to keep tabs on hypertension as well as sleep apnea, which causes sufferers to stop breathing many times throughout the night. The project was funded by the NIH, NSF and the Sharp Corporation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/blood-pressure-tt0408.html">http://web.mit.edu/newsoffice/2009/blood-pressure-tt0408.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CELL EVOLUTION</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Understanding how living cells originated and evolved into their present forms remains a fundamental research area in biology, one boosted in recent years by the introduction of new tools for genomic analysis. Now, researchers at MIT and Boston University have used such tools to put what they say is "the last nail in the coffin" for one theory about the origin of a basic structure in the cell. In the process, by illuminating a key step in the initial evolution of a basic structure that still exists in most cells in the human body, it may help researchers understand how some of these components work. These include parts of the neurons that make up our brains, sperm cells that determine fertility, and basic elements of cellular reproduction. The new analysis, published in the April issue of Cell Motility and the Cytoskeleton, was conducted by Hyman Hartman, visiting scientist in MIT's Center for Biomedical Engineering, and a Boston University colleague.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/origin-of-cells-0422.html">http://web.mit.edu/newsoffice/2009/origin-of-cells-0422.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">NOVEL NEEDLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Each year, hundreds of thousands of people suffer medical complications from hypodermic needles that penetrate too far under their skin. A new device developed by MIT engineers and colleagues aims to prevent this from happening by keeping needles on target. The device, which is purely mechanical, is based on concepts borrowed from the oil industry. It involves a hollow S-shaped needle containing a filament that acts as a guide wire. When a physician pushes the device against a tissue, she is actually applying force only to the filament, not the needle itself, thanks to a special clutch. When the filament, which moves through the tip of the needle, encounters resistance from a firm tissue, it begins to buckle within the S-shaped tube. Due to the combined buckling and interactions with the walls of the tube, the filament locks into place “and the needle and wire advance as a single unit,” said Jeffrey Karp, an affiliate faculty member of the Harvard-MIT Division of Health Sciences and Technology and co-corresponding author of a paper on the work in the Proceedings of the National Academy of Sciences. The needle and wire proceed through the firm tissue. But once they reach the target cavity (for example, a blood vessel) there is no more resistance on the wire, and it quickly advances forward while the needle remains stationary. Because the needle is no longer moving, it cannot proceed past the cavity into the wrong tissue. Karp’s coauthors are from MIT, Massachusetts General Hospital, Harvard Medical School and Brigham and Women’s Hospital (Karp is also affiliated with the latter two). The work was funded by the Deshpande Center for Technological Innovation at MIT and the Center for Integration of Medicine and Innovative Technology (CIMIT).</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/novel-needle-0406.html">http://web.mit.edu/newsoffice/2009/novel-needle-0406.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">GRAPHIC AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">INSIGHTS INTO PERCEPTION</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">In the classic waterfall illusion, if you stare at the downward motion of a waterfall for some period of time, stationary objects — such as rocks — appear to drift upward. MIT neuroscientists have found that this phenomenon occurs not only in our visual perception but also in our tactile perception, and that these senses actually influence one another. Put another way, how you feel the world can actually change how you see it — and vice versa. In a paper published in an April issue of Current Biology, researchers found that people who were exposed to visual motion in a given direction perceived tactile motion in the opposite direction. Conversely, tactile motion in one direction gave rise to the illusion of visual motion in the opposite direction. “Our discovery suggests that the sensory processing of visual and tactile motion use overlapping neural circuits,” explained Christopher Moore of the McGovern Institute for Brain Research at MIT and senior author of the paper. “The way something looks or feels can be influenced by a stimulus in the other sensory modality.” The research was supported by the McGovern Institute for Brain Research at MIT, Mitsui Foundation, National Defense Science and Engineering Graduate Fellowship, Eric L. Adler Fellowship, Natural Sciences and Engineering Research Council.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/illusion-0409.html">http://web.mit.edu/newsoffice/2009/illusion-0409.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">VIRUS-BUILT BATTERY</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">For the first time, MIT researchers have shown they can genetically engineer viruses to build both the positively and negatively charged ends of a lithium-ion battery. The new virus-produced batteries have the same energy capacity and power performance as state-of-the-art rechargeable batteries being considered to power plug-in hybrid cars, and they could also be used to power a range of personal electronic devices, said Angela Belcher, the MIT materials scientist who led the research team. The new batteries, described in an April issue of Science, could be manufactured with a cheap and environmentally benign process. The research was funded by the Army Research Office Institute and the NSF.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/virus-battery-0402.html">http://web.mit.edu/newsoffice/2009/virus-battery-0402.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MICROBES & DRUGS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Scientists at MIT and Brown University studying how marine bacteria move recently discovered that a sharp variation in water current segregates right-handed bacteria from their left-handed brethren, impelling the microbes in opposite directions. This finding and the possibility of quickly and cheaply implementing the segregation of two-handed objects in the laboratory could have a big impact on the pharmaceutical industry, for example, for which the separation of right-handed from left-handed molecules can be crucial to a drug’s safety. While single-celled bacteria do not have hands, their helical-shaped flagella spiral either clockwise or counter-clockwise, making opposite-turning flagella similar to human hands in that they create mirror images of one another that cannot be superimposed. This two-handed quality is called chirality, and in a molecule, it can make the difference between healing and harming the human body. “This discovery could impact our understanding of how water currents affect ocean microbes, particularly with respect to their ability to forage for food, since chiral effects make them drift off-course. But it is also important for several industries that rely upon the ability to separate two-handed molecules,” said Roman Stocker, the Doherty Assistant Professor of Ocean Utilization in the MIT Department of Civil and Environmental Engineering, and a principal investigator of the research. The work, reported in an April issue of Physical Review Letters, was partially supported by the NSF.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/chiral-microbes-0417.html">http://web.mit.edu/newsoffice/2009/chiral-microbes-0417.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMPORTANT SYNTHESIS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Ten years ago, William Fenical of the Scripps Institution of Oceanography isolated from an ocean-living fungus a compound that has since shown the ability to kill cancer cells in the lab. Now, for the first time, MIT chemists have synthesized the compound, an advance that could open the door to new drug treatments for cancer. The compound, known as (+)-11,11'-Dideoxyverticillin A, is one of the most structurally complex members of a family of naturally occurring alkaloids. Mohammad Movassaghi, associate professor of chemistry, and colleagues reported the synthesis in an April issue of Science. The research was supported in part by Amgen, AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Merck and Lilly.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/synthesis-0424.html">http://web.mit.edu/newsoffice/2009/synthesis-0424.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">GRAPHIC AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">BRAIN WAVES</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Scientists have studied high-frequency brain waves, known as gamma oscillations, for more than 50 years, believing them crucial to consciousness, attention, learning and memory. Now, for the first time, MIT researchers and colleagues have found a way to induce these waves by shining laser light directly onto the brains of mice. The work takes advantage of a newly developed technology known as optogenetics, which combines genetic engineering with light to manipulate the activity of individual nerve cells. The research helps explain how the brain produces gamma waves and provides new evidence of the role they play in regulating brain functions — insights that could someday lead to new treatments for a range of brain-related disorders. “Gamma waves are known to be [disrupted] in people with schizophrenia and other psychiatric and neurological diseases,” says Li-Huei Tsai, Picower Professor of Neuroscience and a Howard Hughes Medical Institute investigator. “This new tool will give us a great chance to probe the function of these circuits.” Tsai co-authored a paper about the work in an April issue of Nature. This work was supported by NARSAD, the NIH, the NSF, the Thomas F. Peterson fund, the Simons Foundation Autism Research Initiative and the Knut and Alice Wallenberg Foundation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/gamma-0426.html">http://web.mit.edu/newsoffice/2009/gamma-0426.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">NANOPATTERNING</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Researchers at MIT have found a novel method for etching extremely narrow lines on a microchip, using a material that can be switched from transparent to opaque, and vice versa, just by exposing it to certain wavelengths of light. Such materials are not new, but the researchers found a novel way of harnessing that property to create a mask with exceptionally fine lines of transparency. This mask can then be used to create a correspondingly fine line on the underlying material. Producing such fine lines is crucial to many new technologies, from microchip manufacturing that is constantly seeking ways to cram more components onto a single chip, to a whole host of emerging fields based on nano-scale patterns. But these technologies have faced fundamental limits because they tend to rely on light to produce these patterns, and most techniques cannot produce patterns much smaller than the wavelengths of light itself. This method is a way of overcoming that limit. The research was carried out by research engineer Rajesh Menon of the Research Laboratory of Electronics and colleagues from the Department of Electrical Engineering and Computer Science. It was reported in a paper published in an April issue of Science. The work was partly funded by grants from LumArray Inc., where Menon is co-founder, the MIT Deshpande Center for Technological Innovation, and DARPA.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/nanopatterning-0409.html">http://web.mit.edu/newsoffice/2009/nanopatterning-0409.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">COOPERATIVE BEHAVIOR</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">One of the perplexing questions raised by evolutionary theory is how cooperative behavior, which benefits other members of a species at a cost to the individual, came to exist. Cooperative behavior has puzzled biologists because if only the fittest survive, genes for a behavior that benefits everybody in a population should not last and cooperative behavior should die out, says Jeff Gore, a Pappalardo postdoctoral fellow in MIT’s Department of Physics. Gore is part of a team of MIT researchers that has used game theory to understand one solution yeast use to get around this problem. The team’s findings, published in an April edition of Nature, indicate that if an individual can benefit even slightly by cooperating, it can survive even when surrounded by individuals that don’t cooperate. In short, the study offers a concrete example of how cooperative behaviors can be compatible with evolutionary theory. Gore’s colleague on the work is MIT physics professor Alexander van Oudenaarden. This research was funded by the NIH and the NSF.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/yeast-games-0406.html">http://web.mit.edu/newsoffice/2009/yeast-games-0406.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MAKING PICKY PROTEINS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Interactions between proteins underlie nearly everything that happens inside a cell — from reading DNA to communicating with the outside world. Many of those proteins have very similar structures, yet somehow they locate and interact with only their specific partner. For years, scientists have been trying to model and design such interactions, with limited success. Now, MIT researchers have developed a model that can be used to design new protein interactions and could help scientists create proteins for use in developing new drugs. “The proteins we design now are not likely to become drugs or therapeutics, but can be used in order to figure out the basic mechanisms of these interactions, which could be extremely valuable,” said Amy Keating, associate professor of biology and senior author of a paper published in an April issue of Nature. This work was funded by the NIH.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/designer-protein-0415.html">http://web.mit.edu/newsoffice/2009/designer-protein-0415.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CELLS’ INNER WORKINGS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Living cells are bombarded with messages from the outside world -- hormones and other chemicals tell them to grow, migrate, die or do nothing. Inside the cell, complex signaling networks interpret these cues and make life-and-death decisions. Unraveling these networks is critical to understanding human diseases, especially cancer, and to predicting how cells will react to potential treatments. Using a "fuzzy logic" approach, a team of MIT biological engineers has created a new model that reveals different and novel information about these inner cell workings than traditional computational models. The team, led by Doug Lauffenburger, head of MIT's Department of Biological Engineering, reports its findings in an April issue of the journal Public Library of Science (PLoS) Computational Biology. Funding was provided by the NIH and the DOD.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2009/fuzzy-logic-0403.html">http://web.mit.edu/newsoffice/2009/fuzzy-logic-0403.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">--END--</font></div> </div></body></html>