<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT Research Digest, Nov. 2008</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">For Immediate Release</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SUNDAY, NOV. 2, 2008</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Contact: Elizabeth A. Thomson, MIT News Office</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">E: <a href="mailto:thomson@mit.edu">thomson@mit.edu</a>, T: 617-258-5402</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A monthly tip-sheet for journalists of recent research advances</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">at the Massachusetts Institute of Technology.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Latest research news: <a href="http://web.mit.edu/newsoffice/research.html">http://web.mit.edu/newsoffice/research.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">RSS -- research feed: <a href="http://web.mit.edu/newsoffice/mitresearch-rss.xml">http://web.mit.edu/newsoffice/mitresearch-rss.xml</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IN THIS ISSUE: Mending Broken Hearts * Personalized Commuting</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Greenhouse Gas Increase * Gene Splicing</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Unconscious Communication * Extra Chromosomes & Cancer<span class="Apple-converted-space"> </span></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Smart Bikes * Cells’ Inner Workings</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Hot Young Planets * China Energy Myth</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MENDING BROKEN HEARTS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Broken hearts could one day be mended using a novel scaffold developed by MIT researchers and colleagues. The idea is that living heart cells or stem cells seeded onto such a scaffold would develop into a patch of cardiac tissue that could be used to treat congenital heart defects, or aid the recovery of tissue damaged by a heart attack. The biodegradable scaffold would be gradually absorbed into the body, leaving behind new tissue. The accordion-like honeycomb scaffold, reported in the Nov. 2 online edition of Nature Materials, is the first to be explicitly designed to match the structural and mechanical properties of native heart tissue. As a result, it has several advantages over previous cardiac tissue engineering scaffolds. Further, the MIT team’s general approach has applications to other types of engineered tissues. “In the long term we’d like to have a whole library of scaffolds for different tissues in need of repair,” said Lisa E. Freed, corresponding author of the paper and a principal research scientist in the Harvard-MIT Division of Health Sciences and Technology (HST). Each scaffold could be tailor-made with specific structural and mechanical properties. Lead author of the paper is George C. Engelmayr Jr., an HST postdoctoral fellow. Other authors are from MIT and the Charles Stark Draper Laboratory. This work was sponsored by the NIH, NASA, and Draper Laboratory.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/heart-1102.html">http://web.mit.edu/newsoffice/2008/heart-1102.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS, VIDEO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PERSONALIZED COMMUTING</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Dozens of cars in the Boston area are testing the latest generation of an MIT mobile-sensor network for traffic analysis that could help drivers cut their commuting time, alert them to potential engine problems and more. In the CarTel project, Professor Hari Balakrishnan and Associate Professor Samuel Madden of MIT's Department of Electrical Engineering and Computer Science use automobiles to monitor their environment by sending data from an onboard computer about the size of a cell phone to a web server where the data can be visualized and browsed. They do so via pre-existing WiFi networks passed during a trip. The resulting data, accessible from the web or a cell phone, not only helps a driver track conditions specific to their own car, but when combined with everyone else's can indicate historical and real-time traffic conditions at different times of the day. "Everybody's data is contributing to collective views of what congestion looks like," Madden said. "Our goal," Balakrishnan said, "is to make the data behind CarTel available to help you plan and organize your commute and drives. We want to minimize the amount of time spent in your car." This work is funded by the NSF and the T-Party Project, a joint research program between MIT and Quanta Computer Inc.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/car-sensors-tt1008.html">http://web.mit.edu/newsoffice/2008/car-sensors-tt1008.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGE AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">GREENHOUSE GAS INCREASE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">The amount of methane in Earth's atmosphere shot up in 2007, bringing to an end a period of about a decade in which atmospheric levels of the potent greenhouse gas were essentially stable, according to a team led by MIT researchers. Methane levels in the atmosphere have more than tripled since pre-industrial times, accounting for around one-fifth of the human contribution to greenhouse gas-driven global warming. Until recently, the leveling off of methane levels had suggested that the rate of its emission from the Earth's surface was approximately balanced by the rate of its destruction in the atmosphere. However, since early 2007 the balance has been upset, according to a paper on the new findings published in Geophysical Review Letters. The paper's lead authors, postdoctoral researcher Matthew Rigby and Ronald Prinn, the TEPCO Professor of Atmospheric Chemistry in MIT's Department of Earth, Atmospheric and Planetary Sciences, say this imbalance has resulted in several million metric tons of additional methane in the atmosphere. In addition to Rigby and Prinn, the study was carried out by researchers at Commonwealth Scientific and Industrial Research Organization (CSIRO), Georgia Institute of Technology, University of Bristol and Scripps Institution of Oceanography. These methane measurements come from the Advanced Global Atmospheric Gases Experiment that is supported by NASA and the CSIRO network.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/methane-tt1029.html">http://web.mit.edu/newsoffice/2008/methane-tt1029.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">GENE SPLICING</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Scientists have long known that it's possible for one gene to produce slightly different forms of the same protein by skipping or including certain sequences from the messenger RNA. Now, an MIT team has shown that this phenomenon, known as alternative splicing, is both far more prevalent and varies more between tissues than was previously believed. Nearly all human genes, about 94 percent, generate more than one form of their protein products, the team reports in the Nov. 2 online edition of Nature. Scientists' previous estimates ranged from a few percent 10 years ago to 50-plus percent more recently. "A decade ago, alternative splicing of a gene was considered unusual, exotic … but it turns out that's not true at all -- it's a nearly universal feature of human genes," said Christopher Burge, senior author of the paper and the Whitehead Career Development Associate Professor of Biology and Biological Engineering at MIT. The research was funded by the NIH, the Knut & Alice Wallenberg Foundation and the Swedish Foundation for Strategic Research.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/splice-1102.html">http://web.mit.edu/newsoffice/2008/splice-1102.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">UNCONSCIOUS COMMUNICATION</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">What you say in a conversation -- whether it's on a first date, a job interview or pitching an idea -- may be less important than how you say it. But the cues that may decide the outcome can be so subtle that neither person in the conversation is consciously aware of them. Whether or not you get the job, or the other person's phone number, is very strongly influenced by unconscious factors such as the way one person's speech patterns match the other's, the level of physical activity as people talk, and the degree to which one person sets the tone -- literally -- of the conversation. These subtle cues provide "honest signals" about what's really going on and strongly predict the outcome, according to research by the MIT Media Lab's Alex (Sandy) Pentland and colleagues. "Honest Signals" is also the title of Pentland's new book about the research, being published this month by MIT Press. The research was based on tens of thousands of hours of data from devices about the size of a credit card that record movements and voices, which Pentland has dubbed "sociometers." Using just this data, with no knowledge of what was said, Pentland could predict the outcome -- whether a job offer, a second date, or investment in a business plan -- more accurately than by using any other single factor.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/signals-1021.html">http://web.mit.edu/newsoffice/2008/signals-1021.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">EXTRA CHROMOSOMES & CANCER</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Mammalian cells with extra chromosomes share some common traits that could be exploited to develop cancer treatments, according to MIT biologists. Having too many chromosomes, a condition known as aneuploidy, wreaks havoc on an organism, usually resulting in birth defects or death. However, it seems to confer an advantage on tumor cells, which are nearly always aneuploid. "Now we can look for compounds that specifically kill aneuploid cells, or look for genes that when you knock them down, kill aneuploid cells," said Angelika Amon, professor of biology and senior author of a paper describing the work in the Oct. 31 issue of Science. Amon and colleagues have started screening such compounds and already identified one promising candidate. The research was funded by the Howard Hughes Medical Institute, the Curt W. and Kathy Marble Cancer Research Fund, a David Koch Research Award and a David Koch Graduate Fellowship.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/chromosome-1030.html">http://web.mit.edu/newsoffice/2008/chromosome-1030.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SMART BIKES</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT researchers unveiled a major new project on Oct. 10 in Copenhagen aimed at transforming bicycle use in Denmark's largest city, promoting urban sustainability and building new connections between the city's cyclists. The project, called SmartBiking, will utilize a novel self-organizing smart-tag system that will allow the city's residents to exchange basic information and share their relative positioning with each other. The project will be implemented citywide in time for the November 2009 U.N. Climate Change Conference, which Copenhagen will host. "One of the most striking aspects of Copenhagen is that it is already a very sustainable city," said Carlo Ratti, Director of MIT's SENSEable City Lab, which is overseeing the Smart Biking project. "So our challenge was, 'How can we enhance these dynamics of sustainability? And how can we use technology to make them more widespread?'"</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/biking-1010.html">http://web.mit.edu/newsoffice/2008/biking-1010.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGES AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CELLS’ INNER WORKINGS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">After spending years developing a computational model to help illuminate cell signaling pathways, a team of MIT researchers decided to see what would happen if they "broke" the model. The results, reported in the Oct. 17 issue of the journal Cell, reveal new ways in which cells process chemical information and could indicate how to maximize the effectiveness of disease treatments such as chemotherapy. A couple of years ago, MIT faculty member Michael Yaffe and colleagues reported a data-driven computational model that allows them to simultaneously investigate the relationships between several cell signaling pathways, which control the cell's response to inflammation, growth factors, DNA damage and other events. This research was funded by the NIH, the Deutsche Forschungsgemeinschaft, the David H. Koch Fund, the Edgerly Innovation Fund and the American Cancer Society.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/cell-signal-1016.html">http://web.mit.edu/newsoffice/2008/cell-signal-1016.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">HOT YOUNG PLANETS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Young planets around other stars may be easier to spot because they stay hotter way longer than astronomers have thought, according to new work by MIT planetary scientist Linda Elkins-Tanton. For a few million years after their initial formation, planets like Earth may maintain a hot surface of molten rock that would glow brightly enough to make them stand out as they orbit neighboring stars. Elkins-Tanton, Mitsui Career Development Professor of Geology in the Department of Earth, Atmospheric and Planetary Sciences, says the "magma ocean" stage for Earth-sized planets may last a few million years, much longer than previously estimated. "That means we may actually see them elsewhere, as detection systems get better," she said. She presented her findings Oct. 14 at the annual meeting of the American Astronomical Society's Division for Planetary Sciences. The research shows that even after the surface magma solidifies, it could stay hot enough to glow brightly in infrared light for tens of millions of years, providing a relatively long window for detectability. The research was funded by the NSF and NASA.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/hot-planets-1014.html">http://web.mit.edu/newsoffice/2008/hot-planets-1014.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CHINA ENERGY MYTH</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A detailed analysis of power plants in China by MIT researchers debunks the widespread notion that outmoded energy technology or the utter absence of government regulation is to blame for that country's notorious air-pollution problems. The real issue, the study found, involves complicated interactions between new market forces, new commercial pressures and new types of governmental regulation. China's power sector has been expanding at a rate roughly equivalent to three to four new coal-fired, 500 megawatt plants coming on line every week, said Edward S. Steinfeld, associate professor of political science at MIT. After detailed survey and field research involving dozens of managers at 85 power plants across 14 Chinese provinces, Steinfeld and his co-authors, Richard Lester (professor, nuclear science and engineering and director of the MIT Industrial Performance Center) and Edward Cunningham (doctoral candidate, political science) found that in fact most of the new plants have been built to very high technical standards, using some of the most modern technologies available. The problem has to do with the way that energy infrastructure is being operated and the types of coals being burned. The three co-authors of the study are members of the Industrial Performance Center's China Energy Group. The research was supported by Shell, the MIT Energy Initiative, and the MIT Sloan School of Management China Program.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/china-energy-1006.html">http://web.mit.edu/newsoffice/2008/china-energy-1006.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">--END--</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div> </div></body></html>