<html><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">For Immediate Release</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">TUESDAY, AUG. 5, 2008</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Contact: Elizabeth A. Thomson, MIT News Office</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">T. 617-258-5402 <span class="Apple-converted-space"> </span>E.: <a href="mailto:thomson@mit.edu">thomson@mit.edu</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT Research Digest, August 2008</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">======================================</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A monthly summary of recent research advances</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">at the Massachusetts Institute of Technology.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Latest research news: <a href="http://web.mit.edu/newsoffice/research.html">http://web.mit.edu/newsoffice/research.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">RSS -- research feed: <a href="http://web.mit.edu/newsoffice/mitresearch-rss.xml">http://web.mit.edu/newsoffice/mitresearch-rss.xml</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IN THIS ISSUE: Simple Insulation * Solar Windows * Fine Lines</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Alzheimer’s Treatment * iShoe Insole * Touch-Based Illusion</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Spinal Cord Stem Cells * Visualizing Mutations * Protective Armor</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Protecting Patient Privacy * Solar at Night * Underwater Breathing</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Satellite Communications * Adapting to Climate Change</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Superconductivity Riddle * Nature-Nurture Link * Climate-Change Policy</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Cellular ‘Parts List’ * Beyond the Solar System * Digitally Fabricated House</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Reprogrammed Cells * Detecting Novel Particles</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SIMPLE INSULATION</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Around the world, an estimated one billion people live in houses whose roofs are nothing more than thin sheets of corrugated metal. These houses become unbearably hot in the summer, freezing in the winter (especially in high-altitude regions), and deafeningly noisy when heavy rains pound on the bare metal. A group of students from MIT and elsewhere think they have found a way to fix these problems all while generating jobs and income for local people. This summer, they're putting their ideas to the test. The basic concept is straightforward: Use locally available agricultural waste, such as straw, held together with a binder made of local resins, to make insulating panels that can be installed right under the existing corrugated metal panels. The panels, based on designs by MIT faculty and students from the Building Technology lab, can be manufactured locally, providing a ready-made way for local people to create businesses that will use readily available materials, provide an inexpensive product to meet a major local need, and keep the profits in the community. The concept grew out of a class project last fall by MIT graduate student Zehra Ali, along with Emmanuel Arnaud of the Kennedy School of Government and Monica Le of the Harvard School of Public Health (who had both cross-registered into the MIT class). The three were taking Developmental Entrepreneurship, taught by MIT professor Alex (Sandy) Pentland and research fellow Joost Bonsen.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/itw-insulation-0701.html">http://web.mit.edu/newsoffice/2008/itw-insulation-0701.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SOLAR WINDOWS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Imagine windows that not only provide a clear view and illuminate rooms, but also use sunlight to efficiently help power the building they are part of. MIT engineers report a new approach to harnessing the sun's energy that could allow just that. The work, reported in a July issue of Science, involves the creation of a novel "solar concentrator." "Light is collected over a large area [like a window] and gathered, or concentrated, at the edges," explains Marc A. Baldo, leader of the work and the Esther and Harold E. Edgerton Career Development Associate Professor of Electrical Engineering. As a result, rather than covering a roof with expensive solar cells (the semiconductor devices that transform sunlight into electricity), the cells only need to be around the edges of a flat glass panel. In addition, the focused light increases the electrical power obtained from each solar cell "by a factor of over 40," Baldo says. Because the system is simple to manufacture, the team believes that it could be implemented within three years--even added onto existing solar-panel systems to increase their efficiency by 50 percent for minimal additional cost. That, in turn, would substantially reduce the cost of solar electricity. This work was supported by the DOE and the NSF.<span class="Apple-converted-space"> </span></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS, VIDEO, GRAPHIC AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/solarcells-0710.html">http://web.mit.edu/newsoffice/2008/solarcells-0710.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">FINE LINES</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT researchers have achieved a significant advance in nanoscale lithographic technology, used in the manufacture of computer chips and other electronic devices, to make finer patterns of lines over larger areas than have been possible with other methods. Their new technique could pave the way for next-generation computer memory and integrated-circuit chips, as well as advanced solar cells and other devices. The team has created lines about 25 nanometers (billionths of a meter) wide separated by 25 nm spaces. For comparison, the most advanced commercially available computer chips today have a minimum feature size of 65 nm. Intel recently announced that it will start manufacturing at the 32 nm minimum line-width scale in 2009, and the industry roadmap calls for 25 nm features in the 2013-2015 time frame. The MIT team includes Mark Schattenburg and Ralf Heilmann of the MIT Kavli Institute of Astrophysics and Space Research. Their results have been accepted for publication in the journal Optics Letters and were recently presented at the 52nd International Conference on Electron, Ion and Photon Beam Technology and Nanofabrication.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/nanochips-0708.html">http://web.mit.edu/newsoffice/2008/nanochips-0708.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">ALZHEIMER’S TREATMENT</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">An Alzheimer's treatment based on MIT research has shown promise in its first clinical trials, according to results announced July 29 at the 2008 Alzheimer's Association International Conference on Alzheimer's Disease. The results indicate that Souvenaid, a nutrient-rich drink made by French food-products company Danone (known in the U.S. as Dannon), may offer a new option in the management of patients with mild Alzheimer's disease. The new clinical study, performed by Philip Scheltens of the Alzheimer Center of the VU University Medical Centre, Amsterdam, and sponsored by Danone Research, assessed the affects of the nutritional supplements in a randomized, double-blind, controlled study of 212 patients with mild Alzheimer's. The investigators found a statistically significant benefit in mild Alzheimer's patients on the delayed verbal memory task in a group receiving the treatment, and also a significant effect in the subgroup of very mild patients. The concept behind the treatment, a cocktail of three dietary supplements normally found in the bloodstream, was developed by MIT's Richard Wurtman, the Cecil H. Green Distinguished Professor of Neuropharmacology.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/alzheimers-humans-0729.html">http://web.mit.edu/newsoffice/2008/alzheimers-humans-0729.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">ISHOE INSOLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Your grandmother might have little in common with an astronaut, but both could benefit from a new device an MIT graduate student is designing to test balancing ability. The iShoe insole could help doctors detect balance problems before a catastrophic fall occurs, says Erez Lieberman, a graduate student in the Harvard-MIT Division of Health Sciences and Technology who developed the technology as an intern at NASA. Falls among the elderly are common and can be deadly: In 2005, nearly 300,000 Americans suffered hip fractures after a fall, and an average of 24 percent of hip-fracture patients aged 50 and over die in the year following their fracture, according to the National Osteoporosis Foundation. Lieberman is now testing the iShoe technology in a small group of patients. The current model is equipped to diagnose balance problems, but future versions could help correct such problems, by providing sensory stimulation to the feet when the wearer is off-kilter. "By doing that we can replace the sense and thus improve people's balance," Lieberman says. Lieberman and other iShoe team members have applied for a patent on the technology, to be jointly held by MIT, Harvard and NASA.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/i-shoe-0716.html">http://web.mit.edu/newsoffice/2008/i-shoe-0716.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">TOUCH-BASED ILLUSION</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Anyone who has seen an optical illusion can recall the quirky moment when you realize that the image being perceived is different from objective reality. Now, a team of scientists from MIT, Harvard and McGill has designed a new illusion involving the sense of touch, which is helping to glean new insights into perception and how different senses--such as touch and sight--work together. Ambiguous visual images are fascinating because it is often difficult to imagine seeing them any other way--until something flips within the brain and the alternative perception is revealed. This phenomenon, known as perceptual rivalry, is of great interest to neuroscience. Because rivalrous illusions produce changes in perception that are independent of changes in the stimulus itself, they may help to understand how the brain gives rise to conscious experience. "The most familiar illusions involve vision," explains Christopher Moore, a principal investigator at the McGovern Institute for Brain Research at MIT and an assistant professor in MIT's Department of Brain and Cognitive Sciences. "But we're interested in discovering general principles of perception, and we wanted to see whether similar illusions can occur in the tactile domain." Moore is senior author of a paper on the new illusion published on the Current Biology web site in July. This work was funded by the National Health and Medical Research Council of Australia, the U.S. Department of Defense, McGill University, the National Sciences and Engineering Research Council of Canada, the McGovern Institute for Brain Research at MIT and the Mitsui Foundation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/touch-0717.html">http://web.mit.edu/newsoffice/2008/touch-0717.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SPINAL CORD STEM CELLS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">A researcher at MIT's Picower Institute for Learning and Memory has pinpointed stem cells within the spinal cord that, if persuaded to differentiate into more healing cells and fewer scarring cells following an injury, may lead to a new, non-surgical treatment for debilitating spinal-cord injuries. The work, reported in the July issue of the journal PLoS (Public Library of Science) Biology, is by Konstantinos Meletis, a postdoctoral fellow at the Picower Institute, and colleagues at the Karolinska Institute in Sweden. Their results could lead to drugs that might restore some degree of mobility to the 30,000 people worldwide afflicted each year with spinal-cord injuries. This study was supported by the Swedish Research Council, the Swedish Cancer Society, the Foundation for Strategic Research, the Karolinska Institute, EuroStemCell and the Christopher and Dana Reeve Foundation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGES AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/spine-0721.html">http://web.mit.edu/newsoffice/2008/spine-0721.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">VISUALIZING MUTATIONS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT biological engineers have developed a new imaging system that allows them to see cells that have undergone a specific mutation. The work, which could help scientists understand how precancerous mutations arise, marks the first time researchers have been able to pinpoint the number and location of mutant cells--cells with a particular mutation--in intact tissue. In this case, the researchers worked with mouse pancreatic cells. "Understanding where mutations come from is fundamental to understanding the origins of cancer," said Bevin Engelward, associate professor of biological engineering, member of MIT's Center for Environmental Health Sciences, and an author of a paper on the work appearing in a July online edition of the Proceedings of the National Academy of Sciences. The research was funded by the NIH, the DOE and the Singapore-MIT Alliance.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGE AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/mutation-0721.html">http://web.mit.edu/newsoffice/2008/mutation-0721.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PROTECTIVE ARMOR</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Scientists seeking to protect the soldier of the future can learn a lot from a relic of the past, according to an MIT study of a primitive fish that could point to more effective ways of designing human body armor. The creature in question is Polypterus senegalus, a fish whose family tree can be traced back 96 million years and who still inhabits freshwater pools in Africa. Unlike the vast majority of fish today, P. senegalus sports a full-body armored “suit” that most fish would have had millions of years ago. It was known that the fish’s individual armored scales were comprised of multiple material layers—each of them about 100 millionths of a meter thick. But in a U.S. Army-funded study carried out through the MIT Institute for Soldier Nanotechnologies and published in the July 27 online issue of Nature Materials, a team of MIT engineers unraveled exactly how the layers complement one another to protect the soft tissues inside the fish body—particularly from a penetrating biting attack. This research will help to better understand the relationship between a specific threat and the corresponding design of a protective armor, the team said. The work was led by Christine Ortiz, an associate professor in MIT's Department of Materials Science and Engineering.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/fish-armor-0727.html">http://web.mit.edu/newsoffice/2008/fish-armor-0727.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PROTECTING PATIENT PRIVACY</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Newly developed MIT software will help to allay patients’ fears about who has access to their confidential records, facilitating the use of that data for medical research. In the July 24 issue of the journal BMC Medical Informatics and Decision Making, a team of MIT researchers describes a computer program capable of automatically deleting details from medical records that may identify patients, while leaving important medical information intact. Patient records that are to be shared within the research community must have any identifying information removed, according to the U.S. Health Insurance Portability and Accountability Act (HIPAA). However, manual removal of identifying information is prohibitively expensive, time consuming and prone to error—constraints that have prompted considerable research toward developing automated techniques for “de-identifying” medical records. “We’ve developed a free and open-source software package to allow researchers to accurately de-identify text in medical records in a HIPAA-compliant manner,” said Gari D. Clifford, a principal research scientist in the Harvard-MIT Division of Health Sciences and Technology (HST) who led the work with Principal Investigator Roger G. Mark, a professor in HST and MIT’s Department of Electrical Engineering and Computer Science. The work was funded by the National Institute of Biomedical Imaging and Bioengineering.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/robo-censor-0723.html">http://web.mit.edu/newsoffice/2008/robo-censor-0723.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SOLAR AT NIGHT</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">In a revolutionary leap that could transform solar power from a marginal, boutique alternative into a mainstream energy source, MIT researchers have overcome a major barrier to large-scale solar power: storing energy for use when the sun doesn’t shine. Until now, solar power has been a daytime-only energy source, because storing extra solar energy for later use is prohibitively expensive and grossly inefficient. The MIT researchers have hit upon a simple, inexpensive, highly efficient process for storing solar energy. Requiring nothing but abundant, non-toxic natural materials, this discovery could unlock the most potent, carbon-free energy source of all: the sun. “This is the nirvana of what we’ve been talking about for years,” said Nocera, the Henry Dreyfus Professor of Energy at MIT and senior author of a paper describing the work in the July 31 issue of Science. The new process allows the sun’s energy to be used to split water into hydrogen and oxygen gases. Later, the oxygen and hydrogen may be recombined inside a fuel cell, creating electricity to power your house or your electric car, day or night. The key component in the process is a new catalyst that produces oxygen gas from water; another catalyst produces valuable hydrogen gas. The new catalyst works at room temperature, in neutral pH water, and it’s easy to set up, Nocera said. This project was funded by the NSF and by the Chesonis Family Foundation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS, GRAPHIC, VIDEO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/oxygen-0731.html">http://web.mit.edu/newsoffice/2008/oxygen-0731.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">UNDERWATER BREATHING</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Hundreds of insect species spend much of their time underwater, where food may be more plentiful. MIT mathematicians have now figured out exactly how those insects breathe underwater. By virtue of their rough, water-repellent coat, when submerged these insects trap a thin layer of air on their bodies. These bubbles not only serve as a finite oxygen store, but also allow the insects to absorb oxygen from the surrounding water. “Some insects have adapted to life underwater by using this bubble as an external lung,” said John Bush, associate professor of applied mathematics and a co-author of a paper on the work in the Aug. 10 issue of the Journal of Fluid Mechanics. Thanks to those air bubbles, insects can stay below the surface indefinitely and dive as deep as about 30 meters. This phenomenon was first observed many years ago, but the MIT researchers are the first to calculate the maximum dive depths and describe how the bubbles stay intact as insects dive deeper underwater, where pressure threatens to burst them. The research was funded by the NSF.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS, VIDEO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/underwater-0729.html">http://web.mit.edu/newsoffice/2008/underwater-0729.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SATELLITE COMMUNICATIONS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">The enhanced capabilities of a new global satellite communications (SATCOM) system were successfully tested recently by MIT Lincoln Laboratory, representing a major step forward in improving communications among U.S. Department of Defense commands around the world. Earlier this year, Lincoln Laboratory completed its portion of the on-orbit testing of the first Widespread Global Satellite Communications (WGS) system, a constellation of geosynchronous satellites orbiting 22,300 miles above the equator, which provides worldwide high-capacity military satellite communication capabilities.<span class="Apple-converted-space"> </span></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/lincoln-satellite-0728.html">http://web.mit.edu/newsoffice/2008/lincoln-satellite-0728.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">ADAPTING TO CLIMATE CHANGE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Ten graduate students from MIT recently spent three weeks in Durban, South Africa, working on a project to develop an online tool that could help municipal governments around the world adapt to a changing climate. During their trip, the students concentrated on gathering information from representatives working in diverse municipal agencies and uncovering adaptation activities that are taking place in the course of routine work. Over the next year, that information will be used to develop and refine the planned tool that could aid Durban and other cities in initiating adaptation efforts. In their interviews and field trips, the students were learning "what people understood about climate change and current climate activities in Durban as well as trying to identify innovative adaptation techniques that could readily be adopted elsewhere," says JoAnn Carmin, associate professor of environmental policy and planning in MIT's Department of Urban Studies and Planning, who taught a class on urban climate adaptation that culminated in the May-June field trip to South Africa.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/itw-southafrica-0722.html">http://web.mit.edu/newsoffice/2008/itw-southafrica-0722.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">SUPERCONDUCTIVITY RIDDLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MIT physicists believe they have identified a mysterious state of matter that has been linked to the phenomenon of high-temperature superconductivity. Led by Eric Hudson, associate professor of physics, the researchers are exploring materials that conduct electricity with no resistance at temperatures around 30 degrees Kelvin above absolute zero. Such materials could have limitless applications if they could be made to superconduct at room temperature. Hudson's team is focusing on the state of matter that exists at temperatures just above the temperature at which materials start to superconduct. This state, known as the pseudogap, is poorly understood, but physicists have long believed that characterizing the pseudogap is important to understanding superconductivity. In their latest work, published online in a July issue of Nature Physics, they suggest that the pseudogap is not a precursor to superconductivity, as has been theorized, but a competing state. If that is true, it could completely change the way physicists look at superconductivity, said Hudson. The research was funded by the NSF and the Research Corporation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGE AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/super-conduct-0718.html">http://web.mit.edu/newsoffice/2008/super-conduct-0718.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">NATURE-NURTURE LINK</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Neuroscientists at MIT's Picower Institute for Learning and Memory have found that a previously unsuspected set of genes links nature and nurture during a crucial period of brain development. The results, reported in a July issue of the Proceedings of the National Academy of Sciences, could lead to treatments for autism and other disorders thought to be tied to brain changes that occur when the developing brain is very susceptible to inputs from the outside world. Nature--in the form of genes--and nurture--in the form of environmental influences--are fundamentally intertwined during this period. "Our work points to how a disorder can be genetic and yet be dependent on the environment," said co-author Mriganka Sur, Sherman Fairchild Professor of Neuroscience at the Picower Institute and chair of MIT's brain and cognitive sciences department. "Many genes require activity to be expressed and make their assigned proteins. They alter their expression when activity is altered. Thus, we reveal an important mechanism of brain development that should open up a window into the mechanisms and treatment of brain disorders such as autism." This work is supported by the NIH and the Simons Foundation.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/missing-link-0715.html">http://web.mit.edu/newsoffice/2008/missing-link-0715.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CLIMATE-CHANGE POLICY</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Long-term climate change policy in the United States and abroad is likely to change very slowly, warns an MIT professor who says the lack of future flexibility argues for stronger short-term goals to reduce carbon emissions. In a study in Decision Analysis, a journal of the Institute for Operations Research and the Management Sciences, Assistant Professor Mort Webster of MIT's Engineering Systems Division tackles the complex problem of global climate change policy with a new approach. Specifically, Webster's analysis incorporates the theory of "path dependency." In its most basic form, the theory holds that how something evolves in the future depends heavily on the path it was on in the past. Webster says that because policy-making for climate change involves sequences of decisions over very long time periods, it is possible to reduce uncertainty and revise decisions along the way. But political systems can exhibit path dependency, a force that makes large policy shifts in the future difficult and rare, so most future decisions may only offer relatively small, incremental changes. "Although staging climate change policy decisions over time would seem to make sense, the tendency of U.S. and international policy to change extremely slowly requires front-loading the painful decisions," Webster says, arguing that greater near-term emissions reductions are needed as a hedge against long-term catastrophe.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/climate-path-0711.html">http://web.mit.edu/newsoffice/2008/climate-path-0711.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">CELLULAR ‘PARTS LIST’</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Imagine trying to figure out how your car's power train works from just a few of its myriad components: It would be nearly impossible. Scientists have long faced a similar challenge in understanding cells' tiny powerhouses -- called mitochondria -- from scant knowledge of their molecular parts. Now, an international team of researchers has created the most comprehensive "parts list" to date for mitochondria, a compendium that includes nearly 1,100 proteins. By mining this critical resource, the researchers have already gained deep insights into the biological roles and evolutionary histories of several key proteins. In addition, this careful cataloging has identified a mutation in a novel protein-coding gene as the cause behind one devastating mitochondrial disease. A full description of the work appears in a July edition of the journal Cell. This work was supported by the NIH.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/powerhouse-0711.html">http://web.mit.edu/newsoffice/2008/powerhouse-0711.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">BEYOND THE SOLAR SYSTEM</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">The Voyager 1 and 2 spacecraft have traveled beyond the edges of the bubble in space where the sun's constant outward wind of particles and radiation slams into the interstellar medium that pervades our galaxy. The first scientific reports on what the Voyagers found there appears in a July issue of the journal Nature. The deep-space probes have now traveled more than 8 billion miles away from the Earth. Because they are leaving the solar system on paths that are about 45 degrees apart, the data reveals details about the shape of the bubble created by the solar wind: it is squashed rather than being a symmetrical sphere. Some of the data that revealed this boundary region comes from a set of magnetic field sensors developed and built at MIT back in the 1970s. John Richardson, Principal Research Scientist at MIT's Kavli Institute for Astrophysics and Space Science, is a co-author of the two Nature papers, and John Belcher, professor of physics at MIT and former principal investigator for the Voyager Plasma Science instrument, is a co-author of one of them. The work was funded by NASA.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">IMAGE AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/voyager-0707.html">http://web.mit.edu/newsoffice/2008/voyager-0707.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">DIGITALLY FABRICATED HOUSE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Larry Sass, assistant professor of computation in the MIT Department of Architecture, is one of five architects featured in a major show this summer at the Museum of Modern Art titled "Home Delivery: Fabricating the Modern Dwelling," which focuses on the importance of prefabricated and sustainable housing. Sass' project--Digitally Fabricated House for New Orleans--will be on view until October 20. The New Orleans-style "shotgun" house is alongside four other architects' works in a lot next to MoMA. Sass and the other architects are detailing their work on blogs at <a href="http://www.momahomedelivery.org">www.momahomedelivery.org</a>. Based on research in New Orleans--including meetings with local homeowners and documentation of houses throughout the Garden District, the French Quarter, Faubourg Marigny and the Lower Ninth Ward--Sass' house is fabricated entirely of friction-fit components with tabs or slots for easy assembly, and the structure is put together solely with muscle and mallets, without any nails or screws or glue.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTO AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/arch-sass-0703.html">http://web.mit.edu/newsoffice/2008/arch-sass-0703.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">REPROGRAMMED CELLS</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Cells from mice created using genetically reprogrammed cells can be triggered via drug administration to enter an embryonic-stem-cell-like state without the need for further direct genetic manipulation. The discovery, by researchers from MIT and the Whitehead Institute for Biomedical Research, promises to bring new efficiencies to embryonic stem-cell research. The work is reported in a July issue of Nature Biotechnology. "This technical advancement will allow thousands of identical reprogrammed cells to be used in experiments," says Marius Wernig, one of the paper's two lead authors and a postdoctoral researcher in the lab of MIT biology professor and Whitehead Member Rudolf Jaenisch. "Using these cells could help define the milestones of how cells are reprogrammed and screen for drug-like molecules that replace the potentially cancer-causing viruses used for reprogramming," adds Christopher Lengner, the other lead author and also a postdoctoral researcher in Jaenisch's lab. The research was supported by the Human Frontiers Science Organization Program, the Ellison Medical Foundation, the Ruth L. Kirschstein National Research Service Award and the NIH.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/stem-cells-0701.html">http://web.mit.edu/newsoffice/2008/stem-cells-0701.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">DETECTING NOVEL PARTICLES</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">Nearly 20 years in the making, the largest particle accelerator in the world will start running in Switzerland this summer, offering scientists a glimpse of particles that have never been seen before. MIT has a team of about 40 scientists and students preparing for the debut of the Large Hadron Collider (LHC), which is expected to start up in August. Thousands of physicists from around the world are collaborating on the project, based at CERN, and MIT has the largest American university group working on one of the collider's four detectors, known as the CMS (compact muon solenoid) detector. Once the $10 billion accelerator starts up, particles will zoom around the 27-kilometer loop at nearly the speed of light, creating controlled collisions that scientists hope will reveal the elusive Higgs boson and other novel particles. "You don't know what you'll find behind the door because you've never seen it. We're going to open the door and step in and see what's there," says associate professor of physics Christoph Paus, the leader of the MIT group working on the CMS detector.</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">PHOTOS AVAILABLE</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">MORE: <a href="http://web.mit.edu/newsoffice/2008/lhc-0701.html">http://web.mit.edu/newsoffice/2008/lhc-0701.html</a></font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; "><font face="Helvetica" size="3" style="font: 12.0px Helvetica">--END--</font></div><div style="margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; font: normal normal normal 12px/normal Helvetica; min-height: 14px; "><br></div> </div></body></html>