COMPUTATIONAL **R**ESEARCH in **B**OSTON and **B**EYOND **S**EMINAR

Math, Methods, and Models for Data-Driven Rheology

KYLE RAVI LENNON

Massachusetts Institute of Technology

ABSTRACT:

While data-driven tools and techniques have revolutionized much of the scientific and engineering landscape, they have yet to make a substantial impact in the field of rheology. Rheological data sets are at once too scarce and too diverse to enable traditional machine learning approaches — their scarcity a reflection of the time- and material-intensive nature of bulk rheometry, and their diversity a product of the many rheometric protocols and tools used to characterize the mechanical behavior of complex fluids. The success of data-driven rheology depends on our ability to simultaneously employ different types of experimental data in a unified manner, a notable weakness of many common machine learning approaches. In this talk, I will present frameworks that bring together rheological data, and demonstrate their role in designing data-driven tools for modeling and analyzing complex fluids. Among these is a new mathematical construction for asymptotic nonlinearities in simple shear flows, called Medium Amplitude Parallel Superposition (MAPS) rheology. MAPS reveals both a common embedding for many previously disconnected data sets and a new class of data-rich experiments. After discussing the applications of this new rheological data embedding within machine learning frameworks for model identification and material health monitoring, we will develop a new data-driven modeling framework for complex fluids in arbitrarily strong flows. This scientific machine learning framework combines a universal approximator with a frameinvariant viscoelastic constitutive equation, allowing rheologists to train admissible models using laboratory-accessible data. By construction, this framework is highly extensible, and trained models may be deployed scalably in computational fluid dynamic workflows, enabling rapid design of engineering systems involving complex fluids.

FRIDAY, DECEMBER 2, 2022 12:00 PM – 1:00 PM

https://math.mit.edu/sites/crib/

ZOOM Link...

https://mit.zoom.us/j/96155042770

Massachusetts Institute of Technology