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Education

Ph.D., Chemistry, Stanford University 2016 – 2021
Advisors: Rhiju Das, Vijay Pande

M.Phil., Chemistry, Cambridge University 2015 – 2016
Advisor: Daan Frenkel

B.A., Chemistry and Mathematics double major, Music minor, Pomona College 2011 – 2015

Honors and Awards

Jane Coffin Childs Postdoctoral Fellowship 2022
Award for Outstanding Graduate Research, ACS PHYS division & J. Chem. Phys. 2021
Chemical Computing Group Excellence Award, ACS COMP division 2021
Joseph R. McMicking Award, Stanford Chemistry Department 2021
NSF Graduate Research Fellowship 2016
Churchill Scholarship, Sir Winston Churchill Foundation of the USA 2015
John Stauffer Prize for Academic Merit in the Sciences*, Pomona College 2015
Beckman Scholar 2014
Goldwater Scholar 2014

*Awarded to one STEM graduate annually who exhibits the highest academic promise

Research

Jane Coffin Childs Postdoctoral Fellow, Brandeis University 2022 – present
Advisor: Dorothee Kern

▪ Developed deep-learning-based approaches to predict multiple conformational states in proteins
▪ Created benchmarks of nuclear magnetic resonance (NMR) measurements of dynamics in

proteins and integrated with state-of-the-art deep-learning approaches, including AlphaFold2 and
language models

▪ Advised students in projects on protein language model interpretability

Visiting Faculty Researcher, Google Brain Oct. 2022 – Apr. 2023
Host: Lucy Colwell

▪ Consulted on projects using deep learning in structural biology and biotechnology

Postdoctoral Fellow, Wyss Institute, Harvard Medical School 2021 – 2022
Advisor: William Shih

▪ Developed novel assays for ultra-sensitive biomolecule detection

Graduate research, Stanford University 2016 – 2021
▪ Developed improved algorithms for RNA thermodynamic prediction using statistical mechanics to

link high-throughput experiment and machine learning
▪ Created biophysical models for RNA degradation, applied methods to design experimentally

validated model mRNA therapeutics with improved shelf lives
▪ Linked dynamical systems theory and unsupervised machine learning frameworks to create

improved analysis tools for molecular dynamics simulations of proteins

Graduate research, Cambridge University 2015 – 2016
▪ Improved understanding of DNA nanomaterial nucleation and assembly via molecular modelling
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Peer-Reviewed Publications (*Equal contributions)

Wayment-Steele, H.K.*, Ojoawo, A.*, Otten, R., Apitz, J.M., Pitsawong, W., Ovchinnikov, S., Colwell, L.J.,
Kern, D. “Prediction of multiple conformational states via sequence clustering and AlphaFold2”.
(2023) Nature (In Press).

Wayment-Steele, H. K.*, Kladwang, W.*, Watkins, A. M.*, Kim, D. S.*, Tunguz, B.*, ... Das, R. (2022)
Deep learning models for predicting RNA degradation via dual crowdsourcing. Nature Machine
Intelligence (4) 1174-84.

Wayment-Steele, H.K., Kladwang, W., Strom, A. I., Becka, A., Lee, J., Treuille, A., Eterna Participants,
Das, R. (2022). RNA secondary structure packages evaluated and improved by high-throughput
experiments. Nature Methods (19) 1234-42.

Leppek, K.*, Byeon, G.W.*, Kladwang, W.*, Wayment-Steele, H. K.*, Kerr, C. H.*, ... Barna, M., Das, R.
(2022) Combinatorial optimization of mRNA structure, stability, and translation for RNA-based
therapeutics. Nature Communications (13) 1536.

Andreasson, J. O., Gotrik, M. R., Wu, M. J., Wayment-Steele, H. K., Kladwang, W., Portela, F.,
Wellington-Oguri, R., Eterna Participants, Das, R., Greenleaf, W. J. (2022). Crowdsourced RNA
design discovers diverse, reversible, efficient, self-contained molecular sensors. Proceedings of the
National Academy of Sciences (119) 18.

Wayment-Steele, H.K., Kim, D.S., Choe, C.A., Nicol, J.J., Wellington-Oguri, R., Sperberg, R.A.P., Huang,
P., Eterna Participants, Das, R. (2021). Theoretical basis for stabilizing messenger RNA through
secondary structure design. Nucleic Acids Research, 48(18), 10604-10617.

Kostrz, D., Wayment-Steele, H. K., Wang, J. L., Follenfant, M., Pande, V. S., Strick, T. R., Gosse, C.
(2019). A modular DNA scaffold to study protein–protein interactions at single-molecule resolution.
Nature Nanotechnology, 14(10), 988-993.

Wayment-Steele, H. K., Pande, V. S. (2018). Variational encoding of protein dynamics benefits from
maximizing latent autocorrelation. The Journal of Chemical Physics, 149(21), 216101.

Hernandez, C. X.*, Wayment-Steele, H. K.*, Sultan, M. M.*, Husic, B. E., Pande, V. S. (2018). Variational
Encoding of Complex Dynamics. Physical Review E, 97(6), 062412.

Sultan, M. M., Wayment-Steele, H. K., Pande, V. S. (2018). Transferable neural networks for enhanced
sampling of protein dynamics. Journal of Chemical Theory and Computation, 14(4), 1887-1894.

Husic, B. E., McKiernan, K. A., Wayment-Steele, H. K., Sultan, M. M., Pande, V.S. (2018) A minimum
variance clustering approach produces robust and interpretable coarse-grained models. Journal of
Chemical Theory and Computation, 14(2), 1071-1082.

Wayment-Steele, H. K., Frenkel, D., Reinhardt, A. (2017) Investigating the role of boundary bricks in DNA
brick self-assembly. Soft Matter (2017) 13, 1670-1680.

Agnarsson, B., Wayment-Steele, H. K., Höök, F., Kunze, A. Monitoring of single and double lipid
membrane formation with high spatiotemporal resolution using evanescent light scattering
microscopy. (2016) Nanoscale (8), 19219-19223.

Wayment-Steele, H. K., Jing, Y., Swann, M. J., Johnson L. E., Agnarsson, B., Johal, M. S., Kunze, A.
(2016) Effects of Al3+ on phosphocholine and phosphoglycerol containing solid supported lipid
bilayers. Langmuir 32:7, 1771–1781.
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Wayment-Steele, H.K., Johnson L. E., Tian, F., Dixon, M. C., Benz, L., Johal, M. S. “Monitoring N3 Dye
Adsorption and Desorption on TiO2 surfaces: A combined QCM-D and XPS study.” ACS Applied
Materials & Interfaces (2014) 6, 9093-9099.

Tian, F., Cerro, A.M., Mosier, A. M., Wayment-Steele, H. K., Shine, R. S., Park, A., Webster, E. R.,
Johnson, L. E., Johal, M. S., Benz, L. (2014) “Surface and Stability characterization of a nanoporous
ZIF-8 thin film”. Journal of Physical Chemistry C 118, 14449-14456.

Invited reviews & book chapters

Wayment-Steele, H.K., Das, R. Learning RNA structure prediction from crowd-designed RNAs. Nature
Methods 19, 1181–1182 (2022).

Wayment-Steele, H. K., Wu, M., Gotrik, M., Das, R. (2019). Evaluating riboswitch optimality. Methods in
Enzymology, 623, 417-450.

Teaching

Instructor, Biomolecular NMR course, Swedish NMR Centre, Univ. Gothenburg Sep. 2023

Co-instructor, Topics in Genomics (BIOL 4013) Fall 2020
Co-instructor: Gloria Regisford, Biology Department, Prairie View A & M Univ.
45 students

▪ Invited and hosted 7 visiting speakers from historically underrepresented backgrounds
▪ Developed a novel final project using Eterna as a platform for students to create puzzles based on RNA

molecules relevant to health and disease
▪ Developed interactive class activities on reading scientific literature and introduction to principles in RNA

biophysics
▪ Coordinated interactive career information sessions with volunteer graduate students

Teaching assistant, Macromolecules (BIOC 241) Fall 2020
Instructors: Rhiju Das, Pehr Harbury, Biochemistry Dept., Stanford Univ.
40 students

▪ Developed and led interactive virtual course sessions once a week
▪ Held office hours, assisted in grading

Teaching assistant, Thermodynamics (CHEM 175) Spring 2017
Instructors: Bianxiao Cui, Will Pfalzgraff, Dept. of Chemistry, Stanford Univ.
60 students

▪ Assisted instructors in developing a new computational lab section for the class
▪ Helped develop lab handouts, code bases and exercises
▪ Assisted in running and delivering lectures for three weekly lab sections
▪ Developed homework and exam material, held office hours, assisted in grading

Teaching assistant, Statistical Mechanics (CHEM 171) Winter 2017
Instructor: Tom Markland, Dept. of Chemistry, Stanford Univ.
60 students

▪ Prepared and delivered weekly hour-long discussion sections to clarify concepts in statistical mechanics
▪ Developed corresponding activities for discussion sections
▪ Developed homework and exam material, held office hours, assisted in grading

Teaching assistant, Accelerated Chemical Principles (CHEM 31X) Fall 2016
Instructors: W. E. Moerner, Charlie Cox, Dept. of Chemistry, Stanford Univ.
150 students

▪ Directed two weekly experimental lab sections of 15 students each
▪ Assisted in writing and developing homework, quizzes, exam materials, held office hours, assisted in grading
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Supervisor, Nanotechnology Doctoral Training Centre Michaelmas 2015
Cavendish Labs, Cambridge University
20 students

▪ Met weekly with groups of first-year PhD students to supervise a theoretical chemistry lab exercise
▪ Developed course handouts and code for data analysis

Mentorship, Outreach

Program advisor, Undergraduate and DEI education, Nucleate accelerator 2021-2022
▪ Advised undergraduate and PhD students on initiatives and grants to engage students in biotech-related

research.

Program mentor, Center for Genetically Encoded Materials REU, UC Berkeley Summer 2021
▪ Mentored 2 undergraduates in projects creating an online database of ribosome studies.

Outreach, Eterna Project, Stanford University 2019-2021
▪ Mentored PVAMU undergraduates in directed reading projects related to RNA vaccines, graduate school

application preparation
▪ Assisted in writing grants for outreach initiatives
▪ Assisted in science communication, social media presence, hiring

Program mentor, Stanford Summer Research Program Summer 2020
▪ Mentored 1 undergraduate in a data science project interpreting machine learning models for RNA structure

prediction

Mentor for Teaching assistants, Department of Chemistry, Stanford University 2017-2018
▪ Met monthly with 4 graduate teaching assistants per quarter (12 in total) to discuss teaching strategies and

help guide goal-setting for teaching
▪ Each quarter, ran classroom observation sessions, coordinated teaching evaluations, and summarized and

discussed feedback with each mentee
▪ Helped plan, coordinate and run weeklong Chemistry department TA training orientation at start of fall

quarter
▪ Developed and ran training sessions on effective teaching strategies and grading

Professional Service

General Chair, “Machine Learning for Structural Biology” workshop at NeurIPS 2023
▪ Led writing and submission of workshop proposal to NeurIPS (35% acceptance rate)
▪ Established a novel program working with the journal PRX Life to create an option for authors to publish their

contributions, with publication fees waived
▪ Managed selection of invited speakers and fundraising to support travel grants for underrepresented students

Reviewer 2019-present
▪ Nature Methods, Nature Communications, PLOS Comp. Bio., Nucleic Acids Research, Vaccines, and more

Organizer, NSF Protein Folding Consortium Conference, Berkeley, CA Spring 2017

Senator, Stanford Chemistry Student-Hosted Colloquium Committee 2016 – 2018

Invited talks

HHMI award lecture, Quantitative Biology program, Brandeis University. “Learning the languages of life
(Or, why is AlphaFold like ChatGPT?)” October 2023

Prairie View A & M University, remote. “Intro to RNA structure.” every Fall, 2021-2023
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CASP special interest group for ensembles, remote. “Predicting multiple conformational states using
AlphaFold2 and clustering.” June 7, 2023

Boston Protein Modeling and Design Club, Cambridge, MA. “Understanding (and discovering?)
fold-switching proteins.” April 12, 2023

Machine Learning for Proteins, remote. “Understanding fold-switching proteins using AlphaFold2 and
sequence clustering.” April 28, 2023

Relay therapeutics, Cambridge, MA. “Predicting multiple conformational states by combining AlphaFold2
and sequence clustering.” Jan. 17, 2023

Pomona College Chemistry Dept, Claremont, CA. “Inferring RNA structure and stability via
high-throughput experiment.” July 22, 2022

Inceptive Nucleics, remote. “Inferring RNA structure and stability via high-throughput experiment.”
April 13, 2022

Schrödinger Multiscale modelling for biotherapeutics symposium, remote. “Improving the Stability of
mRNA therapeutics through biophysics, machine learning, and crowdsourcing.” May 13, 2021

TEDx Washington High, Fremont, CA. “Designing stabilized vaccines with community science.”
May 1, 2021

Center for HIV-1 Studies Annual Workshop, remote. “Inferring RNA ensembles via high-throughput data.”
April 5, 2021

IEEE Silicon Valley Chapter, Information Theory Society. “Improving the stability of mRNA therapeutics.”
March 24, 2021

Conference Presentations (Contributed)

“Computational Aspects of Biomolecular NMR” Gordon Research Conference, Mt. Snow, VT. “Have
protein language models learned dynamics? Evaluating with a large-scale benchmark of NMR relaxation
data.” June 20, 2023

Machine Learning in Structural Biology workshop, Neural Information Processing Systems conference,
New Orleans, LA. “Predicting conformational landscapes of known and putative fold-switching proteins
using AlphaFold2” Dec 3, 2022

International Conference on Intelligent Systems for Molecular Biology (ISMB). “Improving RNA structure
prediction with high-throughput crowdsourced data.” July 13, 2020

Media engagement

Nature. “Remarkable AI tool designs mRNA vaccines that are more potent and stable.” May 2, 2023

Fifty Years Podcast. “Screening for Enhanced RNA Vaccines with Kathrin Leppek,
Gun Woo Byeon, and Hannah Wayment-Steele.” October 14, 2021

National Geographic. “Future COVID-19 vaccines might not have to be kept so cold.” April 13, 2021

Patent Applications
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H. K. Wayment-Steele, E. Sharma, R. Das, W. Greenleaf. 63/245,744, “Systems and Methods to
Determine Nucleic Acid Thermodynamics and Uses thereof”, Sep. 17, 2021.

R. Das, H. K. Wayment-Steele. PCT/US2021/040026, “Systems and Methods to Enhance RNA Stability
and Translation and Uses Thereof”, July 1, 2021.

R. Das, C. A. Choe, H. K. Wayment-Steele, W. Kladwang, 17/364,890, “Systems and Methods to
Enhance RNA Stability and Translation and Uses Thereof”, June 30, 2021.
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Predicting and discovering protein dynamics 
 

How does a biological sequence encode not just one, but multiple conformational states? This is the question 
that first drew me to biophysics, and it continues to drive my research interests. In many areas of biology, 
researchers have shown that proteins are exquisitely tuned to occupy multiple structures to perform their 
functions, including signaling, catalysis, transport, and more. The ability to accurately predict protein dynamics – 
multiple conformations, their probabilities, and the rates of transitioning between them – is the next grand 
challenge for structural biology. Given the sheer scale of biology and the difficulty of studying proteins in motion, 
we are far from a comprehensive understanding of dynamic proteins. Electron microscopy and tomography (ET) 
have not reached the time or spatial resolution needed 
to characterize domain-level dynamics, preventing 
access to critical details1. For instance, in the signaling 
proteins critical across human health, entire outcomes 
are determined by the presence or absence of a 
phosphate group2 – just five atoms. In contrast, NMR 
spectroscopy offers superb sensitivity to dynamics 
spanning from picoseconds to hours motions, yet 
currently, the experiments and analysis are time-
consuming. Faster means of understanding dynamics 
would help us better learn the roles and evolution of 
protein dynamics, would significantly accelerate therapeutic discovery efforts, and would allow us to design 
enzymes with the same finesse as nature for applications from breaking down neuro-degenerative plaques to 
capturing carbon. 

Through my proposed research, I envision that in future years we will be able to experimentally determine the 
populations of multiple states and kinetics of any protein, even in vivo, in the span of an afternoon. When 
combined with emerging powers of cryo-ET, these methods will transform the space- and time- resolution at 
which we can understand molecular systems in cells. In its first years, my lab will (1) develop methods to increase 
the throughput of NMR by an order of magnitude, (2) predict kinetics leveraging large-scale collections of NMR 
observables, and (3) identify proteins related to disease with alternate states as potential therapeutic targets.  

 
Prior research. Pursuing the question of how a single biological sequence encodes information about multiple 
structures, while striving to use the most cutting-edge techniques available and make impact where possible, has 
led me to gain unique range of expertise in topics spanning molecular simulation, dynamic programming, NMR 
spectroscopy, large language models, and even mRNA vaccine design. 
 

Improving interpretation of molecular dynamics simulations with deep learning. Molecular 
dynamics (MD) simulations offer the potential to understand atomistic details of protein dynamics. As MD 
simulations grow in length- and time-scales, new theoretical and statistical methods were needed to parse the 
resulting data. I connected a classic framework from unsupervised learning, the variational autoencoder, to 
dynamical systems theory to create an improved approach for extracting long-timescale processes from MD 
data3,4 and demonstrated our approach to incorporate the 
autocorrelation of processes in the learning function was the key 
element5. However, the outsized ratio of theory to experimental data 
left me wishing for a more data-rich problem in biomolecular 
ensembles. I found this exactly in a different macromolecule: RNA. 

 
Advancing RNA structure prediction and design. The 

computer-aided design of RNA molecules is increasingly 
widespread in a variety of synthetic biology and medical 
applications. A variety of algorithms based on dynamic 
programming and increasingly sophisticated techniques have been 
in development for the last 50 years, yet it was understood in the 
field that they were insufficient at predicting thermodynamics-based 
observables beyond a single most likely structure. Working with 
Rhiju Das, we hypothesized that signal to improve one 
of these models lay in datasets of synthetic RNAs 
whose structure characterized via the online RNA 
design game Eterna. I developed a statistical 

Multi-task training on thousands of RNA molecules created an improved 
thermodynamic framework to predict RNA ensemble-averaged observables. 
B. Example prediction of unpaired probabilities of synthetic test set RNAs in 
ViennaRNA, the most widely-used RNA folding package, and EternaFold. 
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mechanical framework to update nearest-neighbor thermodynamic parameters based on 1) predicting unpaired 
probabilities of individual nucleotides through chemical mapping data, and 2) predicting riboswitch activity using 
large-scale riboswitch datasets6 (Fig. 2A). The resulting model, dubbed EternaFold, demonstrated improved 
performance that generalized to diverse independent datasets of molecules including complete viral genomes 
probed in vivo and synthetic designs modeling mRNA vaccines.7 

 
Designing shelf-stable mRNA therapeutics with biophysically-principled ML. The field of RNA 

design emerged as poised to address one of the greatest global health challenges delivered by COVID-19: the 
development of refrigerator-stable mRNA vaccines to enable their more equitable distribution. Vaccines based on 
messenger RNA (mRNA) held immense promise, yet concerns 
persisted regarding their thermostability. A largely unexplored 
strategy to reduce mRNA hydrolysis is to design mRNAs that 
form double-stranded regions, which are protected from in-line 
cleavage and enzymatic degradation, while coding for the same 
proteins. The amount of stabilization that this strategy can deliver 
and the most effective algorithmic approach to achieve 
stabilization were poorly understood. I developed a framework 
relating the hydrolysis rate of a RNA molecule to readily-
computed base-pair probabilities, and demonstrated that many 
mRNA targets we tested were predicted to gain at least 2-fold 
increase in half-life through computational sequence design (Fig. 
3), while maintaining wide diversity in morphologies.8 Our team launched a crowdsourced challenge to solicit 
diverse RNA designs, and experimentally probed their degradation. I distilled features of these data in a machine 
learning model that was used to guide a stochastic mRNA design algorithm. This resulted in sequences that had 
a 2.5-fold increase in shelf life over conventional methods, and increased protein expression over conventional 
designs, even in model vaccines formulations from Pfizer.9 We used these data to launch a crowdsourced 
machine-learning challenge, in which over 1600 teams collaboratively created highly accurate deep learning 
models for predicting RNA degradation.10 

 
Adapting AlphaFold2 to predict alternate protein conformational states. Following my PhD, I wished to 

return to thinking about multiple conformational states of proteins. Because AF2 uses information in evolutionary 
couplings to make structure predictions, I hypothesized that it ought to be able to predict multiple conformations of 
proteins that contain strong evolutionary pressure for multiple states. I reasoned that multiple sets of couplings for 
multiple conformations ought to be most obvious in “metamorphic” proteins, proteins which completely rearrange 
their secondary structures as part of their function. I demonstrated that by simply clustering sequences from a 
multiple sequence alignment (MSA) and using those clusters as input to AF2, we could predict both 
conformations for the metamorphic proteins KaiB, RfaH, and Mad2.11 The few metamorphic proteins that are 
known have been discovered by chance, yet they 
play essential roles from prokaryotes to humans. I 
was curious if we could use our method to screen for 
new alternate conformational states. Indeed, applying 
our method AF-Cluster to proteins with no known 
alternate state, we predicted a novel conformation for 
a secreted oxidoreductase from Mycobacterium 
tuberculosis. My research indicates that for the first 
time, we might be able to systematically identify fold-
switching proteins across any organism of interest. 
This will unlock a deep new understanding of protein 
functions, allostery, and potentials for more complex 
rational design of multi-state proteins. 

 
Large-scale benchmarks of slow protein dynamics. I am convinced that we are poised to be able to 

qualitatively predict multiple conformations of proteins, and that the missing ingredient for achieving quantitative 
prediction lies in the lack of large-scale data on dynamics. I developed a standardized benchmark of NMR 
relaxation datasets comprising 101 proteins and am currently testing if fine-tuning large language models to 
predict which amino acids are exchange-broadened across thousands of proteins in the Biological Magnetic 
Resonance Bank is sufficient to already have predictive power in predicting which residues have slow motion in 
relaxation experiments. This lays the groundwork for future directions detailed more in my proposed research. 
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Proposed Research. 

 
Aim I. Increasing NMR throughput by unlocking “HSQC-only” mode. NMR provides exquisite sensitivity to 
thermodynamics and kinetics, and much information is present in the workhorse 1H15N HSQC spectrum: how 
many folded states are present and their populations. However, assigning a HSQC currently requires multiple 
further triple-resonance experiments that extends the collection time to many days, with further weeks often 
required to analyze. Given the ever-improving accuracy of structure prediction methods and increasing scope of 
structure-related deep learning, do we still need triple resonance experiments to gain useful information from 
HSQCs? An “HSQC-only” paradigm would let us rapidly accelerate data collection while in no way detracting from 
more detailed NMR characterization where desired. In conjunction with inevitable improvements in automated 
protein expression12 and shorter pulse sequences for kinetics experiments (CPMG, CEST), within the decade I 
predict one scientist will be able to collect populations and kinetics of ~10 proteins in a week. This is readily 
extensible to in vivo NMR, currently primarily limited by the time needed for triple resonance assignments13, as 
well as non-equilibrium experiments. “HSQC-only” NMR would be viable if we could accurately predict chemical 
shifts from structure models.  

Although the problem of predicting two 
numbers (the N and H backbone chemical 
shifts) per residue given a 3D structure 
prior might seem like a simple task, highly 
accurate empirical chemical shift prediction 
has eluded the protein NMR field since 
initial work on the problem in the 1970’s14. 
Accurate chemical shifts can be calculated 
using ab initio techniques for some small 
proteins, but ab initio calculations quickly 
become intractable. Chemical shifts are 
extremely sensitive to neighboring electronic effects, such as backbone nitrogen lone pairs or the presence of 
distant sulfur atoms, and existing efforts have not proven sensitive enough to enable accurate assignment from N 
and H chemical shifts alone15. 

To address this problem, I intentionally will not start by testing deep learning architectures myself but will take 
a new approach: I will conduct a crowdsourced deep learning challenge to rapidly solicit and test approaches. I 
estimate it would take any single academic group 5-10 years to make the headway that my lab will enable in 6 
months of a crowdsourced competition. Indeed, introducing the seemingly simple problem of predicting a HSQC 
spectrum to non-NMR experts is a key outcome of this project. I hypothesize that chemical shift prediction will be 
very analogous to other tasks that deep learning has gained traction on such as predicting binding pockets16 and 
ddGs of point mutations17, yet even if one challenge does not create models with sufficient predictive power, 
posing the question as a worthy challenge will hopefully attract the attention of the best minds to eventually solve 
the problem, much as how AlphaFold was a result of researchers at DeepMind becoming familiar with the protein 
folding problem18 through community competition-oriented initiatives like FoldIt19 and CASP. The key steps to 
successfully running this challenge include: 1) designing the challenge –metrics for evaluation, train/test splits, 
explanations, supplemental featurizations, available codebases – so that non-NMR experts have sufficient grasp 
of the problem to be productive, 2) creating sufficient data to train from, and 3) designing stringent blind tests that 
evaluate our end goal. 

1) Crowdsourced challenge design. I have significant experience communicating complex tasks in 
biomolecular prediction to non-experts, most recently by contributing to running a crowdsourced deep learning 
challenge in collaboration with researchers at Kaggle10. This task was predicting RNA degradation, a problem that 
also appeared to our team that it would take years for an academic lab to make headway on. The competition, 
which lasted a total of 3 months, resulted in models that achieved an accuracy where 41% of predictions were 
within experimental error10. The deep learning community surrounding the competition hypothesized and tested 
featurizations and architectures from across natural language processing and computer vision that it would have 
taken PhD students years to identify, code up, and test. I also have broader experience in setting up blind 
challenges through the Eterna platform6-9, which interacting with amateur citizen scientists and machine learners 
from a variety of backgrounds.  

2) Data. Previous empirical chemical shift prediction work using the BMRB has used subsets of all available 
chemical shifts by limiting to proteins for which experimental 3D structures could be confidently matched. We will 
expand the usable data to the entirety of chemical shifts deposited in the BMRB (~12,000) by positing that 
AlphaFold2 models are sufficiently accurate for these purposes. We can augment these data with small molecule 
chemical shifts and/or quantum mechanical-based calculations. I have previously curated data at the scale of the 



Hannah Wayment-Steele, Research Plans (4/5) 
 
entire BMRB (see Aim II), which gives me preparation to understand existing challenges with BMRB data and 
ideas for how to improve its usability.  

3) Designing suitable tests. My lab will create a diverse set of blind tests from new data collected in our own 
lab as well as collect unpublished datasets from other NMR labs. Furthermore, our post-competition analysis of 
what kinds of chemical environments proved easiest and most difficult to predict will be key to using the results of 
this competition to advance continued algorithms and data collection.  

The winning models from the crowd-sourced challenge in phase I will serve as core modules for methods my 
lab will develop to automatically deconvolve and assign HSQC spectra for multiple states in conjunction with prior 
structure models provided by AF2 or other sampling methods. We will test our methods by designing mutations to 
switch populations within protein families with two folded states such as the GA/GB proteins20 and KaiBRS, a novel 
system we introduced in ref. 11, which will be ideal for testing multistate design due to its monomer-monomer 
transition, small size, and clear signal in HSQCs. We continue to expand our fitting and design methods to more 
complex systems. This will be transformative for rapidly obtaining information on multistate proteins to facilitate 
multistate design. As a fallback, if N and H shift prediction alone is not yet accurate enough, we will explore using 
sparse triple resonance experiments for our continued efforts. 

 
Aim II: De novo prediction of protein motions by learning from large-scale NMR datasets. Despite 
considerable interest in the ability to predict protein conformational changes on the timescales of microseconds to 
milliseconds (μs-ms), which are often critically important to biological function, a missing ingredient has been a 
lack of large-scale “ground 
truth” data of protein dynamics. 
Researchers have been trying 
to improve prediction of multiple 
conformations via MD 
simulations for decades, yet 
these comparisons have been 
limited to a handful of model 
proteins. 
Where can we find “ground 
truth” measurements for μs-ms 
dynamics on the scale of thousands of proteins? Dynamics manifest themselves in all structural biology 
measurements, but NMR relaxation experiments uniquely give a direct readout of dynamics. I compiled a 
database of 101 non-redundant datasets of NMR relaxation experiments (R1, R2, NOE), all re-fit using the same 
assumptions17. This represents the first large-scale collection of dynamics data, and is amenable to start using in 
machine learning to develop methods to predict directly from sequence, which residues are undergoing fast or 
slow motions. Strikingly, this dataset revealed a finding about the evolutionary conservation of dynamics: residues 
exhibiting only slow motion (us-ms timescale) were more evolutionarily conserved than static residues, which in 
turn were more conserved than 
residues undergoing any sort of 
fast motion (Fig. 4).  
 
I then realized there were 
markers of μs-ms dynamics 
hiding in plain sight. I compiled 
a benchmark (Fig. 5A) 
consisting of residues missing 
from 1H15N HSQCs due to 
exchange broadening. These 
residues missing from NMR 
have low overlap with missing 
residues in X-ray and Cryo-EM 
data (Fig. 5B), highlighting that 
the signal from these NMR-
derived data on thousands of 
proteins represent an orthogonal set of data for deep learning efforts to predict dynamics. Initial fine-tuning tests 
reveal that AF2 and even the unsupervised language model ESM already contain some capacity to predict such 
exchange-broadening (Fig. 5C). These results show that there are sequence patterns that we can leverage to 
predict μs-ms protein dynamics, and they exist at the scale of thousands. The next step for using these to train 
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and evaluate all-atom models in predicting kinetic lifetimes is modeling the conformations and actual mechanistic 
transitions underlying these data. 1) We will use enhanced sampling molecular dynamics to add bias at residues 
with exchange broadening. We will first evaluate conformations sampled in systems where end states of a diverse 
set of transition types are known, in collaboration with Paul Robustelli (Dartmouth). This will generate atomic-level 
training data for these systems representing transitions at the μs-ms timescale, and provide populations of states 
via the deposited bias. We will determine a computational scheme that enables this MD at the scale of the BMRB 
and make these sampled data publicly available. 2) We will use these all-atom conformations as training data for 
a Boltzmann generator-type framework that explicitly includes barrier heights to account for kinetics. CASP 
prediction challenges will provide an independent test of methods: CASP15 in 2022 had 9 pilot targets with 
multiple conformational states21 and will doubtless continue to expand initiatives for multiple conformations. 
 
Aim III: Discovering novel druggable conformations relevant to understudied diseases. The advent of 
methods such as AF2 has enabled many databases of predicted protein structures. However, developing 
therapeutics requires understanding a target’s alternate states and kinetics.22,23 I previously used AF-Cluster11 to 
identify a novel alternate state for a pathogenic protein: 
a secreted oxidoreductase from M. tuberculosis, which 
we verified indeed occupies two stably folded states. 
My lab will screen proteins implicated in disease for 
alternate conformations to provide a more complete set 
of models of their conformational states. I will maintain 
my collaboration with Dr. Gloria Regisford and Dr. 
Ashley Oyewole Andrea at Prairie View A&M 
University, to engage them and their students in 
identifying overlooked diseases and pathogens to 
direct our efforts. We can start immediately with 
existing methods including AF-Cluster and apply 
improved methods from Aim II. We will use 
computational pipelines to screen structures for 
putative drug-binding sites24 and will characterize 
candidates in conjunction with fragment libraries with 
NMR25.  
 
Future directions. With our advances in Aim I to rapidly characterize dynamic proteins, improved prediction 
methods from Aim II, and discovering dynamic proteins in novel contexts from Aim III, there are many more 
questions my lab will be poised to tackle. For instance, can we map all the ways dynamics evolve in protein 
families, and can we apply these rules to create designer enzymes? Can we predict the structures and actions of 
proteins far from equilibrium? Our work will ultimately help us reach a deep and general understanding of how life 
encodes and uses motion.
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